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U iABSTRACT

An abstract model is suggested to describe precisely systolic

networks and to verify their operation. The data items appearing on

the communication links of such networks at consecutive time units

are represented by data sequences and the operation performed by the

network-cells are modeled by a system of equations involving operations

on sequences. The input/output relations, which descirbe the global

: ,.effect of the computations performed by the network, are obtained by

solving the corresponding system of sequence equations. This input/

output description can then be used to verify the operation of the

network.

The model is supplemented with a simple computer language that

may be used to express any system of causal equations describing the

operation of a systolic network. An interpreter is developed for

-.this language to solve such a system for specific forms of the inputs

and to produce the corresponding outputs. The application of this

.. *"" interpreter to the computational assessment of a given systolic network

is equivalent to the simulation of its execution.

The abstract model is then applied to the specification and verifi-

cation of a systolic machine for the computation of the elemental arrays

in finite element analysis. Finally, possible organizations for complete

finite element systems are suggested based on the idea of pipelining

the computations associated with the different elements.
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I. INTRODUCTION.

" " "In the past few years, the concept of systolic architectures (331 became

:4.. .
I-

I ; increasingly important and has been intensively studied for the design of

computer networks that utilize natural parallelism by moving the data regu-

• l arly in the network. This type of architectures has two properties desirable

in VLSI implementations, namely. regularity and local interconnections.

=,.--, .:.Although the concept of systolic architectures is very well developed,

' ""-"few techniques appear to be known for a formal specification and verifica-

v tion of such networks. In fact. In most papers on systolic networks. very

-" "-little formalism is used. and the reader is usually left with a few diagrams

'...and experimental evidence. At best, an ad-hoc proof technique is

Sdeveloped for some examples but is not generally usable.

ae%.

;, : -,By treating systolic networks as a collection of communicating. parallel

:.,'-.processes, some of the techniques for the verification of distributed systems

,.woi (see for example [391 ) may be applied for the verification of some correct-

n ess properties of systolic networks [43,.161. However, this approach does

-".-""-.".not make use of the special properties of systolic networks, and hence.

gives only rather general results.

,.--."in [11], a formal approach for the representation of computational net-

."'" "wor~s was proposed. This approach was elaborated upon in [26,27,531

. where the so-called wave-front notation was used to map algorithmic

":--:: iI  escriptions into systolic implementations. Although this notation provides a

' powerful tool that can be used in the automatic design of systolic ary

O _ 54].it does not appear to have the flexibility needed to describe general

"-"" .ystrolic networks

" a.' _ . ,* * ,' ; ' ' ' _ . ' ' . . " " " _ " " " - " * " ' • " * . . * • -" * • • • • "



The first part of this dissertation, namely Chapters 2. 3. 4 and 5. con-

cerns a formal treatment of systolic networks. We start in Chapter 2 by

introducing an abstract model for systolic computations. The model is

based on the representation of the data items appearing on each communi-

cation link as an infinite data sequence. Moreover, the operation of each

data sequences. This sequence approach separates the time and the space

dimensions of systolic networks and distinguishes between the networks func-

tions and the specific details of the computations, and thus turns out to

r lead to a clear and precise specification of systolic computations.

46 The system of all equations that model the cells in a systolic network

represents an implicit relation between the inputs and the outputs of the

network. By solving this system of equations, we obtain an explicit formula

for the outputs of the network in terms of the inputs. This formula is

.-. callea the network I/0 description. The output of a specific computation

may be found by substituting the corresponding particular input into the I/0

. description. Then a verification of the computation requires only a com-

parison of the resulting Output with the specification of the expected output.

This verification technique is described in Chapter 3. where it is also

applied to different systolic networks.

The applicability of our verification technique depends largely on our

aOility to manipulate sequence operators and to solve systems of sequence

equations. The solvability of the equations is discussed in Section 3.4

where we snow that it is always possible to obtain an analytical expression

for the solution of systems of equations resulting from our model of systolic

computations. However, the analytical solution may sometimes be very com-

V..m

-o,
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plicatea and thus not practical. For this reason, we introduce in Chapter 4

a computer solver that may be used to find numerically the solutions of

sequence equations.

Finally, in Chapter 5. we conclude the first part of the dissertation by

discussing some topics that demonstrate the power of the abstract model

and the flexibility of the sequence notation.

It should be noted here that our abstract model carries some properties

of a model called "automaton networks" [191 which in turn, is a modification

of the von Neumann cellular arrays [52. 8]. It also carries some properties

of an abstract model (35] used by Leiserson and Saxe to prove that any

synchronous system can be converted into an equivalent systolic system.

Moreover. tne objective of the model is similar to that of another model

developed independently by Chen and Mead [10]. Both models separate the

network function from the specific details of a certain computation and allow

for a precise specification and a formal verification of systolic networks.

However, in our model we follow an algebraic approach. while the model in

* 101 is oriented toward a procedural approach. More specifically, a pro-

cedura language is used for the specification of both the network and its

inputs, and the description of the output is obtained by applying fixed point

theory [49] for finding the "least solution" of systems of recursive functions.

The second part of the dissertation consists of the Chapters 6. 7. 8

an. 9. in this part, we apply the abstract systolic model to the specifica-

* tion aria verification of a special purpose system for finite element analysis.

very orierly, the finite element method (see e.g. [57] ) is a technique

tr .oivrng a partial differential equation on a certain domain Q with given

c cfln:on.s on tne ooundary of Q. In the case of linear equations. it

nvolvez oLszcntiaily the following tour basic steps: 1) The generation of a

.-

. ** *. .
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finte element mesh that divides Q into m finite elements 2) The genera-

tion or elemental stiffness matrices and load vectors for each finite element.

3) The assembly of the global stiffness matrix H and load vector b. 4) The

3 olution Of the resulting linear system of equations Hu=b.

Due to its various applications in engineering and mathematics, many

finite element software systems have been developed (see e.g. 144] ) and

.. wicely used for the solution of a variety of boundary value problems. How-

ever. the time required to complete any finite element computation on a

serial computer may become extremely large for many realistic, practical

problems. This usually imposes severe limitations on the size and type of

the problems that can be handled. and leads engineers to use lower

degrees of approximation and hence less accurate models. This is espe-

cially true if a design procedure Is based on the results of running a finite

element solver repeatedly, with a certain decision to be taken after each

*run (interactive design), or if the result of the analysis is to be reported

within certain time limits, as is often the case in military applications.

For this reason, many researchers have considered the use of some

type of parallel processing in the finite element analysis. in fact, in a sur-

vey on highly parallel computations [20]. Haynes et al. stressed the fact that

one of the most important areas in which parallel computations can be

explored is the solution of partial differential equations, especially the finite

ciement analysis.

Tne use of array processors for speeding up the finte element compu-

tatons were considered by many researchers; for instance. Noor et al.

. -P (1.10] studied algorithms for performing a finite element dynamic analysis

-on tn CDC Star-!O0 computer. Along the same lines. Kamel et al. (48.36]

twaioe tre usefulness of array processors, combined with mini and super

9-::: ::
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mini computers. in finite element computations. Both studies showed that

only a limited speed up can be obtained via array processors, especially in

the generation of the stiffness matrices and load vectors.

Similarly, the use of general purpose multiprocessors in the solution of

the linear systems appearing in finite element computations were studied.

For example, in [14.17]. the Cm* multiprocessor was used to solve linear

systems by iterative techniques. The experiments showed that only a limited

number of processors can be used if congestion is to be avoided in inter-

. . process communications. No studies nave been reported in the literature

on the use of a general multiprocessor system to generate the stiffness

.'.- matrices or load vectors.

in [47. 55], the problem was partitioned into a large number of separate

processes, and each process was assigned to a processor. This system

also incorporates the use of a posteriori error estimates and a correspond-

:ng refinement of the finite element grid. Although this adaptive approach

".pears to be very attractive for parallel processing, it was shown in [56]

that various parallel configurations. discussed in the literature, are not

.-4 expected to give a satisfactory gain in the processing speed since the times

*'i ,for communication and data movements between the different processors

aominato the running time.

The most significant attempt in this area is the design of a finite ele-

ment macnine at tfe Institute for Computer Applications in Science and

Engineering .CASE), at the NASA Langley Research Center [29.28.45]. In

".i, project. a 16 Dit microprocessor with multiply and divide hardware is

-sLgriop to each node in the finite element grid. Each processor is

" recrly conne't;ea to eiqnt immediate neighbors. and a global bus connects

,  : ",. &,: Cr3 :ri me system The motivation for this connection is that

::. ...- - . - . , .. . .. . .. .. .. . , .. , -.. . ,. ..!-.. ' .. ,,t . ,,.. ., ..- ... ... , i .. .' : ,. ..... . . "" ' ' " " ' " * " •"" " ' ' "" " "
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most of me data required to complete the calculations at each node come

from the immediate neighbors of that node. Such a machine is planed to

have 1024 processors and is still subject to experimental studies.

Altnougn its idea is attractive, the finite element machine has many

serious drawbacks: First of all, the direct relation between the number of

processors and the number of nodes in the finite element grid imposes

severe limitations on the size of the grid. Secondly. a suitable mapping 1.'

nas to oe found which associates the nodes with the processors. In [4]. S.

H. Bokhari showed a possible method for accomplishing this task but stated

tniat the problem becomes very complex and time consuming for regular

* ,meshes of size larger than 30x30. and is even more complex for irregular

nmesnes, Finally, in [30] the authors concluded that some additional tree

like naraware. besides the global bus. is needed to implement global func-

:ions such as the sum and maximum over quantities distributed over the

nodes £5]. According to Jordan [28], the finite element machine is most

;uitaoie if the interconnections between its processors follow the same pat-

tern as mhe finite element mesh which is a very rigid restriction.

By carefully analyzing the different steps in the linear finite element

. nai;i.-,. we may note that the involved computations are highly regular, and

:nat tney can be divided into separate phases, where each phase depends

,.n~y on tre preceding phase. Hence the data can be transferred from

__?:e to pna:,e in a pipe-lined fashion. The computation within each phase

:.-I;C welt structured and mostly compute bound, which makes it a very

.';: rpiicjtion for systolic architectures.

::,-. Dr:efly introducing the finite element analysis in Chapter 6, we

.C; ', ,',a;er 7. the abstract model to the specification and verification

, , -,,, -, .ystem for me generation of tne elemental arrays. This gen-

• ">',-''.' .' -L-' -'.' .' -' ,. ,; ;_ ';'¢'; .\',','.,' ' ' .,',.' ,L - ". " . ." " "- ".-" ". " . - . , " ** "'"*""
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eration is often a major time consuming task in workaday finite element

computations.

In Chapters 8 and 9. we describe the architecture of a complete finite

element system. The suggested system is based on the idea of pipelining

iL' the computations associated with the elements rather than processing them

in parallel on an array of processor, as is the case in the machine

described in (29]. This latter machine uses an iterative scheme for the

solution of the linear system of equations resulting from the finite element

I. , formulation. It reduces the processing time considerably by employing a

number of processors proportional to the size of of the problem. On the

ll other hand. the pipeline/systolic approach may be applied with either direct

or iterative solution schemes, and it results in an architecture that is not

dependent on the number of elements in the mesh that covers the domain

H of the problem. Basically. it uses a fixed number of processors to com-

plete the analysis in a time proportional to the size of the problem. Each

approach has its own merits and may be suitable for certain applications.

it should be mentioned, however, that the architecture of the system

that applies a direct solution scheme has the disadvantage of being depen-

dent on the bandwidth of the global stiffness matrix. Systems that apply

iterative solution schemes do not share this limitation but are relatively

lower. In fact. it turns out that the time for completing each iteration step

proportional to the number of elements in the mesh.

0

'... .+.



2. AN ABSTRACT SYSTOUC MODEL

Systolic architectures, pioneered by H. T. Kung, are becoming increas-

" ingly attractive due to continuous advances In VLSI technology. This type of

network architectures has two properties very desirable In VLSI implementa-

tions; namely. regularity and local interconnections.

A systolic network can be viewed as a network composed of a few

types of computational cells, regularly interconnected via local data links and

organized such that streams of data flow smoothly within the network. For

an introduction to systolic architectures, we refer to [33.31] where further

references to specific examples are given.

As an introductory example, we briefly review a simple systolic network

for the computation of one dimensional convolution expressions (31]. More

specifically, given a sequence of numbers (x , x2 , ... X n, and a sequence
7'°,

of weights (w1 . w2 ... Wk). we want to compute the sequence (y1. Y2

Ynt 1-k where each yI Is defined by:

-' wA i~-
.. x (2.1)

j=1 *
Figure 2.1 shows the building cell of the 1-D convolution network under

discussion. It is a multiply/add cell with a one word memory to store a

real number w.

At each clock pulse, the cell receives two input data items; x. and

in

• Yin' performs its computation and delivers at the next clock pulse the out-

puts x0 = in and yo w xIN. Figure 2.2 shows three such cells

connected into a network that performs the convolution calculation for the
S.

case k=3. The elements x1 . x2 ' ... n are pumped In at the left end of

.. %

- *9**..* '.%
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XinX0 -X3 -X2 -X1

W W Wz w

YO Yin 0-0-0-

Figure 2.1 Figure 2.2
A multiply/adla cell. A 1-D convolution network.

-. x-x x1

w3  W w321
.9.- , - 0

t= 3

- x3 - x2  x1

W W2  Wi

t=4
:-x x-x3 x2

4 3 2

W3  Wi
'.1* w 1 w x - 0

~*. -. , t 5

-x - x3

- W3

°x + x
Wi 1 22
+ W X

3 3

r-riii Lo' m - The operation of the 1-0 convolution network
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the network, each separated from the other by one time unit, and zeroes

are pumped in at the right end. To illustrate the operation of the array, we.how in Figure 2.3 the relative location and value of each data item at

times t=3.4.5 and 6. where t=1 is the time at which the network started its

execution. By following the data paths. It is easy to ascertain that the output

of the array will include the sequence (yl Y2 l

In order to specify and ver ify formally the operation of any systolic net-

work, we have to consider both the spatial topology of the network and the

timing of the data movement on its communication links. In this chapter,

we suggest a formal model designed specifically to conveniently separate

the space dimension of the systolic architecture from its time dimension.

The separation makes the specification of systolic networks clearer and

leads to a formal technique for the verification of their operations. We A

start by considering the mathematical basis of the model.

2.1. Data sequences and causal operators.

We define a data sequence to be an infinite sequence whose elements

are members of the set R =R U (0). where R is the set of real numbers6
and 0 denotes a special element, not belonging to R. called the "don't

care element". We extend any operator defined on R to R in one of the

following two ways: .

1) By adding the rule that the result of any operator involving 6 is 6. For

example, we extend the usual arithmetic operations 'op' = '+' '-' '" or

V', by adding the following rule

6 'op' x = x 'op" 6 = 6 for all xeR6

This class of operators on R will be called 6-regular operators.

2) By treating 6 as a special symbol that affects the result of the opera-

701.,°
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r _[::. ,.tion. This Class will be called non 6-regular operators. For example. we

Rwill consider later the binary operator 0 such that for any x~y ER6 .

.:.x 0 y = x y,. it r~y ,6; x 0 6 = 60 x = x (2.2)

Two other non 6-regular operators. that will be used in Section 3.3. are

the operators min and max 6 defined on an ordered pair (xy), x,ycR 6 by

min(x.y) if x.yO6
min(xy= y if x=8 or y=6

and

mx(y)= max(x.y) If x.y#O,:, ,:.a m x (M.Y) =
x if x=8 or y=8.

where minO and maxO carry the usual meaning on R. The reason for dis-

tinguishing between 6-regular and non 6-regular operators will become

.- clearer as we proceed with the discussion.

J Let N be the set of positive integers. Then any data sequence 77 is

defined as a mapping from N to R6 • that is. the image element 77(i). iEN.

is the Ith element in the sequence. The set of all data sequences, that is

the set of all such mappings, will be denoted by Ru = 7 l 7:N-R I

Any operation defined on R is extended to R by applying the

operation element-wise to the elements of the sequences with 0 being the

result of any undefined operation. For example. if 'op' is a binary operation
Adefined on R6 . then for all e172 ER U " we have 771 ' 2 = 713. where for

all ieN. 713 (i) is given by

1 171i) 'op" 721i) if 713() is defined

7)3 "' otherwise.

We will also use scalar operations on sequences. For example, tm,

scalar product of a sequence i1eR 6 and a number wER is defined as the

sequence = w 71 ER; for which C(i) w 710), lEN.

1 7-.=. o . *- o ...- .. *....
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Given the previous definition of data sequences. we define the set of

bounded data sequences R a C R to contain those sequences having only

a finite number of non-0 elements. It is then natural to introduce the ter-
mination function T:R..N such that for any 7jeR T(71) is the position of

the last non-0 element in 7; in other words:

for any 71eR 8 . T(71)=i 78(i) and -r(i)=6 for >i.

In this dissertation, we will only consider bounded data sequences. These

will be denoted by small greek letters and simply referred to as sequences.

Two special sequences will be repeatedly used. namely the don't care

sequence 0 and the zero sequence t. The first is defined by 0 (t)=O for

all t. and the second by &(t)=O for 1tT(L) and any arbitrary large T(O.)

In addition to the operators extended from R to we may also

define operators directly on R In general, an n-ary sequence operator r

is a transformation r:[R'lnA-.R 0 where [if ln=RN xR, x-... W is the cartesian

product space of n copies of R Many operators of this type will be

defined in Section 2.4; we introduce here only a basic unary operator that

will be used frequently in our discussion, namely the shift operator

n R- defined for any k)11 by

where

C if i~k

7 1 ( i ) -
(i-k) if i >k

More descriptively. nl inserts k 6-elements at the beginning of a sequence.
5"

For example if =a.a 2 .a 3 .a 4 0.... then T(4)=4 and

(i) = a I <i 4T()

n 3 = 5.6.8.a 11a2.a3.a4' 1C, ....-

It is easy to verify that the termination function generally satisfies

. *
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Uk -. 4..13

i/'='"r.':T(n f) = T(f ) k

4 " It Is also clear that we can define a sequence operator by combining

previously defined sequence operators. For example we might define an
.%-.

operator r*X x-. -W, as follows:

r(i.77.c) = n [t t 71

where square brackets are used for grouping and parenthesis for enclosing

the arguments of the operator.

S. - . We define a causal operator to be any n-ary sequence operator

r:[Rt n-., - which satisfies the causality property in the sense that the ith

element of any of its operands can only affect the ith element of its image

. for i>i. In order to formulate this more precisely, assume that for any

given sequences 71r R' r=1.2 ..... n, the image under r is i=r(7 1 ... '7r.'n),

Then r is a causal operator if the replacement of any operands 7r" 1<r<n.

- by other sequences 7?r satisfying

2." .71 r (t) = "7)r ) 14t <i

( I' .... results in an image sequence v' = r(711 .... 7r "n for which

°.'4" Q'() = (t) 1~~

In other words, the value of C(i) depends only on the first i-1 elements

of 7r" 14r~n.

th
Similarly, we may define weakly-causal operators for which the i ele-

ment of the image sequence t(i) depends only on the first i elements of

the operands 71 r' 14r~n instead of the first i-1 elements. With this. it is

1-2 211
easily seen that the combination r r (or r F ) of a causal operator F

2and a weakly-causal operator r is a causal operator. For instance, the

k k 2
shift operator nl is causal and hence, the combined operator n 2 is

2
causal, for any weakly causal operator F
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In the previous discussion, we only considered the space R6  of

sequences of real numbers. However, other sequence spaces may be

defined as well, by starting with a set different from the set of real

numbers R. For example, if we start from the set of boolean truth values

8 = (true. false), then we may define the space of booledn sequences B

- {( ' J:N-.BU(O) 1.

2.2. The abstract model.

We begin the specification of the mathematical model used In our verif-

ication technique with the definition of a loop-less, directed multigraph

G(V.E, op_ o) as a structure composed of

(a) a set V of nodes;

(b) a set E of directed edges;

(c) two functions P_, o:E-V. satisfying the condition that for any edge

e cE.

Po (e) ot o(a) (2.3)

1..

S. For each edge e E, the nodes iP(e) and Po (e) are the source and

destination node, respectively, of that edge. Clearly, the condition (2.3)

prevents any nodal loops in the graph. This definition of a multigraph

allows any two nodes to be connected by more than one edge in the same

direction, a property that may be useful when we represent systolic networks

by this abstract model.

As usual in graph terminology, for any node v4EV, the edges (e; _ -.

(e)=v) directed out of v are termed the OUT edges of v. while the edges

(ev(e)=v) directed into v are termed the IN edges of v. Accordingly. the

IN-degree and OUT-degree of v are the number of IN edges and OUT

edges of v. respectively. Any node v eV with IN-degree zero or OUT-
m .%

, oO. •
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degree zero is called a source or a sink. respectively. All other nodes are

called interior nodes of G. We shall use the notation Vs. V T and V Ifor

the subsets of V containing the source. sink and interior nodes of V.

respectively. Of course. the condition VS U VT U V/ = V Is always satls-

fled.

With this notion of a multigraph. we define our abstract systolic model

.=w ,,. to be composed of the following components.

[All A multigraph G(V,E,P_., ).

LA42 A coloring function col:E-,CE . which maps E into a given finite set of

colors CE. and hence assigns a color to each edge in E. The coloring

function is assumed to satisfy the condition that the different IN edges of

any node in V UVT have different colors, and correspondingly that the dif-
I T

ferent OUT edges of any node in Vs UV have different colors. Edge colors

S will be denoted by lower case letters.

IA31 For each edge e eE. a sequence e of a given sequence space is

"J% specified.

[A41 For each interior node veV with IN degree m and OUT degree n. we
are given n causal m-ary operators rI,:[ ,m-1r wnode

,'"- "- which specify the nd

I/0 description". More specifically, if 1i. i1. .m and fl. i=1,.... n are

the sequences associated with the IN and OUT edges of v, respectively.

then the n relations

Vr(7 , . 7,m) (=1,-- n

are the I/0 description of v. The different IN and OUT edges of v are

, .. distinguished in the i/O description by their colors.

Since [A2] ensures that all edges terminating at a given node v have
d-. -td

-T]'.. "*,different colors, it fOllOwS that any edge eEE may be uniquely identified by

p • *.'
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a pair (y.v), where y=col(e) and v=,p(e). To simplify the notation, the pair

(y.v) will often be written in the form yv" and the sequence associated with

that edge will be identified by the symbol 7 ' where we replaced the letter

y by its corresponding greek letter 71.

For practical applications, it is generally desirable to identify the nodes

of the network by appropriate labels which correspond to the problem at -,

hand. This means that we introduce a set L of labels together with a one-

to-one function l':V-.L from V onto L. In our examples, we usually Identity

the nodes directly with their labels.

2.3. The general systolic network.

By giving a physical interpretation to each component in the general

abstract model we obtain a general systolic network. The basic idea of this

interpretation may be summarized as follows:

Each interior node represents a computational cell and each source/sink

node corresponds to an input/output cell for the overall network. To distin-

guish in our figures the computational cells from the I/0 cells, we depict

computational cells by circles and I/0 cells by squares.

Each edge x GE represents a unidirectional communication link betweenv

the two cells it connects. The sequence associated with x then comprises

the data items that appeared on it in consecutive time units. More specifi-

th
cally, if 4V is the sequence associated with x . then the i element of fv.

namely j(vi) is the data item that appeared on xv at time t=i units, where

t=1 is the time at which the network started its operation.

Clearly, the sequence space from which the sequences are taken

corresponds to the type of data items that may be carried on the commun-

ication links. In this dissertation, we will consider only networks in which

.4->

°°So o . *. . . . . . . . .- .. .

"= " % " ."-". e °. ° . . . . . - ,-.", . ... "...r.. .- '.-.v . °.- .*.*Sp .*° °. ° ". '. =
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the communication links may carry real numbers. In other words, any

sequence is assumed to be in the space R.

For an interior node. the node I/0 description describes the computa-

tions performed by the cell corresponding to that node. We illustrate this

with two simple examples:

r.-in 0X y

n -rin

Figure 2.4 - A delay cell Figure 2.5 - A multiply/add cell

EX 1: The node shown in Figure 2.4 represents a simple latch cell

which produces at any time t>1 on its output link the same data item

",- that appeared on its input link at time t-1. At time t=1. we have

71(1)=O. which corresponds to the fact that at the beginning of the net-

work operation no specific data item appeared on the output link.

EX 2: The operation of the multiply-add cell mentioned in Section 2.1

and shown in Figure 2.1 may be represented by the following node I/O

descriptions:

=n ~
0 in

70 = fl (7in t w ,in )

, where weR is a given real number and in" 77 in' 4 0 and 71o0 are the
T7 p°

.. . input and output sequences of the node as shown in Figure 2.5.

At this point, it may be useful to note that if a 6-regular operator is

. 4 used to model a computational cell, then this cell treats 6 as a "don't

• -know" quantity, and consequently, the result of any operation cannot be

,.... ?;e

...-.. -. -..

*.?.* *. ... * *. ** * .. * .. *. . 4 . * *Q"..
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known if any of the operands is not known. On the other hand. non 0- %4

regular operators are used to model computational cells which treat 0 as

a special symbol that affects the result of the operation. Hence, each phy-

sical communication link in networks containing cells of this type should be

augmented by an additional wire to indicate whether the link carries valid

data or not. The operation of each cell is then dependent on this addi-

tional piece of information.

Since in any practical dynamic system any data item produced by a

computational cell at time t depends only on the data provided to that cell ,

at times less than t. we immediately see the importance of the condition

imposed in Section 2.2 on the node I/O descriptions, namely that exclusively on

causal operators in the sense of Section 2.1 are to be used. We also *.4

.. '

note that with the model descriDed above, the computational power of each

cell is not limited to simple arithmetical operations. In other words, a cell

could be an intelligent cell that can perform elaborate calculations provided

only that we can express these calculations in terms of causal operators. ,.'

Clearly. operators on sequences play an important role in the abstract

model. In the next section, we introduce additional sequence operators that

a are defined directly on R

2.4. Additional operators on sequences.

It was shown in the last section that element-wise operators and the

shift operator may be used to model simple computational cells. However.

these operators are not sufficient to model cells with memory capabilities or

with complex control structures. Here. we introduce new sequence operators

that may be used to express the computation of some elaborate types of

cells. For simplicity, given any operator r: E 0 n -R the notation -

thK[r(l-...n)](t), will be employed to designate the t element 7(t) of the

L.:-t) w l
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image sequence n=r(i .... .,). This is consistent with the convention of

using square brackets for grouping. We will also use the symbol - for in-

teger division and the Fortran function modO that specifies the remainder of

an integer division. We start by generalizing the definition of the shift

operator given in Section 2.1.

The Shift operator nr - is defined for any r by

" if r)O and tlr
1 41(t) { (t -r) otherwise.

4.

r
, Hence. for r>0. 0 inserts r 6-elements at the beginning of a sequence

and therefore models the computation of a delay cell. On the other hand.

for r<O. nr trims the first r elements of the sequence and thus is a non

causal operator which cannot be used to model computational cells. The

role of the negative shift operator is to provide in the proofs an inverse for

the positive shift. More precisely, for any sequence t. we have - r  r  =

r -r4. The converse is not always true. in the sense that n - 4 = n only

-. if 4(t)=6 for t~r.

The Zero Shift operator 0  . ' has the same definition as except

that n inserts r zeroes at the beginning of a sequence instead of r 5-

elements. The zero shift operator is useful in modeling delay cells in net-

works that initially set the data on their communication links to zero. In

' . such networks we must assume that the entries corresponding to the time

' ". t=1 in any non input sequence are equal to 0 rather than 0.

r ksThe Accumulator operator A ' R - P is defined to model a cyclic
•6

* accumulator that starts operation at time t=r. accumulates a new element

every s time units and restarts a new cycle every sk time units. The

- accumulator operator can be defined in terms of the following algorithm that

computes [A 4](t) for any t>O. given the elements (/), 14t.

II

:,. . ' " '.. ,' .', "... .'" , .' .'..., ". ". ". ". ",.",. ?.2,'j.'2,'2.''.'j 2 ' _',2 ' , .' 
-"

..... . . . . . ,, , ,' -',".", ', . " '" .'..'. .. _ . . . ,-."." .". '.' ,." ." ,'i." .'-
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IF (t<r) THEN [Ar'k's (t) - 6 /P accumulator is idle 2/

ELSE

BEGIN

t = t - mod((t-r) + sk) /1 time of last reset 2/

na = ((t-t) + s) t 1 /" number of elements accumulated 2/

rks na -I
EA U(t) = J 4(ta/si) /2 result of accumulating na elem.*/

/ =0

END

Evidently, this algorithm is equivalent with

r."A" t <Ir

(A"r.k t" (tn)-i

j=O r

where na and t are as specified before. As an example, let
r

a. = al. I*a 2 .b 2 .. ".a7 b 7 ,,6.. (2.4)

then

A 2 ,3 ,2 '= .b IoSb Itb 2 O.b1 I-b 2 *b3 'Sb4 "' 4 ib5 Sb 4 O -b5 ib 6 SOb7 ... •

where 0 denotes an element that is equal to the preceding one.

The Multiplexer operator M w 1 ... wn (4 1.. ) An 6  is defined tor 17

model a multiplexer that has n inputs 1 n It starts its operation at

time t=r and periodically multiplexes its inputs with a time ratio of

w 1:w2: • :wn. If the length of the multiplexer cycle is denoted by

n
k we, then the following algorithm defines the multiplexer operator

• "., e = ]

wi -wnIF (t<r) THEN [Mr .. 1,. 4n (t) 6 /1 multiplexer idle 2/ -

ELSE

BEGIN

t = o - od(it-r) + k) /* start of current cycle A/
* C

Find the largest integer 1 <e n

,* 'I
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such that (t-t c ) < E W / determine interval within cycle "/

i1=1

.[ . Wl( .. 4(n(t) = 4 t) /2 chose corresponding input I/

,4 9END

As an example, let

I 1 =a 1 aa2 ,..7,aa9.0,1..
and

*9 I.,.

7 b 1 , b 2 "b 7 .. , 41

. then

M1,2 (C.7) = 6.6.a3 .b4 .b5 .a6 ,b 7 '..ag.8...

It is also interesting to note that the multiplexer operator can be used

-' to model a de-multiplexer cell. For example. If we want to sample the

sequence j at times t=r.2r,3r.... then we may express this operation as
Ml'r - 1 (j,6) where 0 Is the don't care sequence introduced earlier.

r

- The multiplexer operator can be used to define two further operators.

- .- namely. the expansion and the piping operators.

U I The Expansion operator Ef:o -fR models a cyclic memory that is loadedr6

at time t=r and is overwritten every k time units. It Is formally defined by

E-1€ V = rI-- ". j ~ -

2-71 which on the basis of the definition of the multiplexer operator may be

rewritten as

[ -
t r

4:, { 7(t-t U t ;lr

where t = mod((t-r) + k). For example, with f of (2.4) we have

1. 2 6. 1 .0.0.0% .0.0 .0.0..b 7 .0.0.0.8.

-. Note that the accumulator, multiplexer and expansion operators are

L " l' .. .. . ..... . "
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weakly causal operators. Besides the causal and weakly causal operators

used in modeling computational cells, some sequence operators may be

Introduced for the sole purpose of allowing us to simplify the description of

data sequences. Following are two such operators:

The Piping operator pk : 81 m-R 6 defined by

pk (1 A .'71(-.... (.4 1 , l1)k i , (m-1)k .
m 17

and T(P 7 .(.77,m)) = mk. In other words, Pk concatenates the first ke..

elements of each of the m sequences 7. e=l., -. m. and forms one long

sequence.

On the basis of the definition of the multiplexer operator It Is easily

shown that the following algorithm is equivalent with the above definition of

the piping operator

k 1 mIF(t>mk) THEN [P (71 -...71 )] (t) = 8

ELSE

BEGIN

Find the largest integer 1e m such that t ek

,k()](t) = 719(t-(e-)k)

END

In the remainder of this dissertation, we will use the abbreviations

Pk ,(7m e) for P k (771 ... 7M), and Pk (77) for Pk (77"" " .7). As will be
a I'm m m m

seen later, the piping operator is very useful for the verification of pipelined

operation of systolic networks.

The Spread Operator e ,-.0 defined by

[e U](t) = i

8 otherwise

Hence es inserts s 6-elements between every two elements of . With the

sequence of (2.4) we have, for example

• . . -.. ... .,. . . . o. ..-. .. -. . .- ,. . .. . 0 ,".,', .'., '. .,. .. : - . ., -, ,' ' '



U
23

te j

I= a1 .8.8.b...a 2 .8..b 2 .•

In Appendix A. we give some properties about combinations of the dif-

ferent sequence operators. Those properties provide tools for the manipula-

. . .\ tion of sequence expressions and hence will be used extensively in the

verification of systolic networks. In the next section. we introduce the

notion of 'Network I/O Description". which is analogous to the transfer func-

-; tion in circuit theory.
.: , % .%"

2.5. The Network VO Description.

- Our goal in this section is to model the computation of a systolic net-

work by describing the relation between its outputs and Its inputs. In order

h to formalize this input/output relation, we start by introducing some new ter-

•. .'" ""minology. We call "network output sequences" those sequences associated

with the IN edges of sink nodes, and "network input sequences" those

associated with the OUT edges of source nodes. Then the system of all

node I/O descriptions provides a specification of the computation performed

by the network in the form of an Implicit relation between the network

input and output sequences. This relation will be called the "network I/O

description".

As a simple example, consider the hypothetical network with the graph

Sshown in Figure 2.6. In this graph. we assume that the edges directed to

the left are given the color y and those directed to the right the color x.

We also follow the naming convention of Section 2.2 to identify the different

edges in the graph. To complete the network description, a node I/0

description has to be specified for each node in the graph. Assume that
these are given by the following causal relations:

N

For node 1: 4, = [ 71 , 1] (2.5.a)

10 = 7 1 "1 (2.5.b)b%. . 0
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For node 2: j3 = r' 42  (2.6)"-' 'L = G [ 3  = /3 ](2.6)
For node 3: 1= n [ 1 73 1 (2.7)

-''S* . bI-1 ' node X

L.....J node 2 node

Figure 2.6 - A hypothetical systolic network

For this network, 713 and 41 are the network Input sequences and 710 is

the network output sequence. In order to obtain the network I/0 description

explicitly, we have to solve the equations (2.5), (2.6) and (2.7). that is. we

have to obtain an explicit expression for 70 in terms of j and 713.

Generally. It Is very difficult, and sometimes impossible, to derive an

.' explicit solution of the system of node i/O equations. In the next section.

we show that this task may be greatly simplified in the case of certain net-

works with a homogeneous structure.

2.6. Homogeneous Systolic Networks.

By condition [A21, any edge ecE is uniquely identified by its color and

one of its incident nodes. In fact, we have already used this as a con-

.. venient means for identifying edge3 by their color and terminal node. Let

M C CEXVI be the set of all pairs (yv). yeCE . veV 1 . for which there is

an edge ecE with y=col(e) and v=,_(e). Then the terminal node u=4p (e)

-'. is uniquely given and hence the successor function jg:M V u VT is well

defined by the association

(y'v)C M. y=col(e), v=Vo_(e) -*l(y'v)=Vo (e). "

In other words, if there exists an edge e with color y and starting node v.

then IL(yv) is the terminal node of e.

° 7
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-.,. Given a systolic network based on the graph G= (V.E.w_,w }, a subset

VI I VI of interior nodes is said to be a homogeneous set if:

[H1] All the nodes In V, have Identical IN and OUT degrees, say m

and n. respectively.

LI [H21 The sets of the m colors for the IN edges of any interior node

v EV, are identical. So are the sets of the n colors for the OUT edges

of v. Denote the colors of the IN and OUT edges of v by

1 2 m a 1 2  n
y . -y and z z .... z , respectively.

[H31 The node I/O descriptions of any interior node veV are generic

in the sense that they may be written in the form:

I. ° M
C' r =r(77. .77V) i= ,n

where r ,i=l. - .,n are given n-ary operators which are independent of

the particular node in V1 , M Is the successor function defined earlier

in this section and 71 m and C i=l,. -. n are the
.- v

sequences associated with the IN and OUT edges of v. respectively.

A network is said to be homogeneous if the set of interior nodes V in

its graph G is a homogeneous set. More generally. if there exists a parti-

tion VI = V1 u U of VI into k non-empty homogeneous subsets

/1V .. V., then the network is said to be k-partially homogeneous. The

main advantage of having a homogeneous (or partially homogeneous) network

is that the resulting system of equations has a repetitive pattern. which, in

0: many cases. allows us to obtain its solution analytically,

As an example, we consider the 1-D convolution network described in

the beginning of this chapter. The graph of this network is shown in Figure

. f l2.7. where we assumed that the edges directed to the left have the color

's' while those directed to the right have the color 'p'. The nodes of the

°9 .4
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graph are identified by the integers -1,0.1.....02, where nodes -1 and k+2

are source nodes. nodes 0 and k+1 Sink nodes, and nodes 1 through k

interior nodes. The successor function is defined for any interior node

,t=4.

• m.
• • ,.i=l ..... k by

+k Pk Pk-1 Pk-2 Pi Pi-P1P P
nnode

* AEk - 1 2

.k+1 kk-1 3 2

Figure 2.7 - The graph for the 1-0 convolution network

d.The 1/0 description of a typical interior node in the graph. 14(i 0, is

given by the following causal relations

V (2.8.a)

.ti I - if y

-i
k+2 ,', - . " (2.9)

This "k~ Syste of difernc eutos is esil sed Fist noe Shth

"-'Z, ~ ~~ olToeo (2..a obviousply Oayis a neirnd ntegah ~~,i

By substituting this in (2.8b) we obtain

-"it

o- a. tW i_1 = i (2.10)

The solution of (2 10) is then given by Lemma 1 in Appendix A as:

:'."'- = Nk - k

or .k  k 9-1

al = 1 [ E (. k -
.t 77 ] (2.11)

;e.-

The oluionof (10)is hengive byLema 1in Apenix as

= ....- P(k.-lA 1k
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This is the I/0 description for the network.

In the previous example we derived the network I/0 description for a

homogeneous network. The technique is equally applicable to k-partially

homogeneous networks if k Is reasonably small. In that case. a system of

difference equations is formed by writing the generic I/0 description for a

typical node from each homogeneous subset of interior nodes i=1,....k.I.

" .' The network I/0 description is then obtained by solving this system of equa-

tions. The back substitution network and the sorting networks discussed in

the next chapter are examples of 2-partially homogeneous networks.

Finally, we note that the system of causal equations that models the

computation of the different cells in a systolic network is an implicit I/0

description for that network. The derivation of an explicit formula for the

-.;- I/0 description depends on our ability to solve this system of equation

analytically. In both its implicit and explicit forms, the I/0 description is a

"- . characteristic of the network itself which is independent of any particular

computation performed on the network. In the next chapter, we associate a

certain comoutation with a given network. and we suggest a technique for

--te verification of this computation.

. :.:.. .-

.- * ,

.- Q?-. ;~ .. . . * . * * --. j..**- -
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3. FORMAL VERIFICATION OF SYSTOUC NETWORKS.

I-. ,A computation on a systolic network is defined by two essential com-

'' ponents. Namely. the systolic network and the description of its input. The

network itself is characterized by its i/O description which provide the gen-

eral relation between the inputs and the outputs. However, in the verifica-

tion of a particular computation, we are usually interested in the behavior of

the network for specific inputs. That is we wish to verify that. for specific

inputs, the network will produce an output with prescribed properties.

Given the I/O description and the input specifications. The verification of

the network's operation is accomplished by substituting the Input specifica-

tions into the I/O description, and then, manipulating the resulting equations

*-. to obtain an explicit description of the output sequences. This explicit

description should be in a form that may be compared with the specification

of the expected output. In order to clarify our technique, we consider

again tne example of the 1-D convolution network whose I/O description was

found to be given by equations (2.11). Our goal is to verify that the net-

worK indeed produces the results in equation (2.1) for the network input

"equences described by

k-1
" =~ eL (3.1.a)

" .. /k = (3.1.b)

where

L-. d(t) = 0. 1Qt(T( )=n -(k-1)

t (t) = xt. 14t4T(4)=n

I n order to find the corresponding specific form of the output

sequence aktv we substitute (3.1) into (2.11) and obtain

-. e u nc 4 l

,%°-
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kti 2k eL . e [j

By the properties P3.1, P4. P2.1 and P1.1 In Appendix A. this may be

rewritten as

2k- 1  2: -,kt : 0, 0 e t t nri l ,n c -  e [w k- ,1

,.1',, =1

S= n2k 1 e t t n e r ni-71
i=1

where T(71)=T(,)=n and 71/(t)-= W kIit) =Wk-it xt . Finally. apply-

ing Property P19 of Appendix A, we find tha,:

. 1 2k-i k-I

.. ,-,= 2k-1 e L . ]
r= el (L + 7)]

2k-1

"r. e 1 32

where 71 is defined by:.(32

- T(7) = n-(k-1)
k

7 (t) = E 7J(t +k-i) 14t 4T(')

"J i ~~11 -i1xt'-

k" " = W q x t _ l t4T(7)

q=1 q tq-
L' ,

In the last line, the summation index was changed to q=k-j+l in order to

provide for the same expression as in (2.1).

Evidently, equation (3.2) represents the output of the array in a clear

-4 and precise form: it indicates that after an initial period of 2k-1 time units.

the elements 7f(t)=yt. lQt n-(k-l). will appear on the output link. each

separated from the other by one time unit.

In me last example, and in the example of the matrix/vector multiplica-

tion network pre5.ritpo in the next section, the verification procedure is

=U * .- ...
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based on the availability of an explicit I/0 description which represents a

general solution of the system of equations that models the computationalnr
4- cells in the network. However, in some cases, it Is difficult to solve this

system of equations in general, and It is much easier to solve it for

- specific input sequences. In other words. sometimes it may be difficult to

--.. determine the explicit I/0 description while it is easier to obtain the

description of the output sequences for specific inputs. The example of the

back substitution network given in Section 3.2 illustrates this further. In this

*-.. example, we verify the operation of the network without obtaining an explicit

formula for the network I/O description.

The existence of an analytical solution to systems of causal equations

is discussed in some details in Section 3.4. where we show that it is

always possible to obtain a formal solution of such system of equations.

However. the form of the solution may sometimes be very complicated and

hence not practically useful. In such cases, we may still verify the opera-

,..' on of the corresponding network if we have an idea about the network

benavior and hence about the sequences associated with the different edges

of the graph. In fact. we need to show that for the given input sequences.

the expected sequences satisfy the system of causal equations. We demon-

S., strate this procedure in Section 3.3 by verifying the operation of a sorting

network for which we could not solve the system of equations explicitly.

3.1. A matrix-vector multiplication network.

O* in [31]. Kung and Leiserson suggested a systolic network for the com-

.utiion of the product y=Ax of a matrix A and a vector x. Here. we

mouaty trill architecture for the case where A is a square, symmetric matrix.

Tne goal of this modification is to reduce the number of input items to the

mn.rwor by only supplying the elements in the upper half of A. This has

o*

i ' • 2
"
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the effect of reducing the I/0 bandwidth of the network which is usually a

limiting factor in VLSI architectures.

The modified network will be formally specified using the abstract model

. of Chapter 2. Moreover. the sequence notation will provide a clear and

"' accurate representation of the Input required for the proper operation of the

'.. .. network including information about the relative timing of the inputs on the

- . different links. We will also apply the technique discussed earlier of obtain-

ing the network I/0 description and then of verifying that, with the appropri-

ate input, the network does produce the elements of the product vector y.

In Figure 3.1. we show the graph of the multiplication network for

matrices of order k. It consists of 2(k+l) internal nodes, each labeled by

a pair (ig), 0i4i1 lg~kt2. The set of colors CE has three elements.

namely. s. r. and z. and the coloring function col(0 maps the edges to the

colors as shown in the figure.

I r

z 2 2

Figure 3.1 - The graph for the matrix/vector multiplication network

0 The principle of operation of the network may be explained by decom-

U
, . posing the product vector y=Ax into two vectors y and y such that

U 'y.y ty. More specifically, if a,,, and x. denote the elements of A and x.

O respectively, we write the elements of yu and y/ as follows:

O'-*J
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Yi (3.3.8)

a. x. = a. x=2..

i=1 .I i=I ..
Yi =  8 ~ ajx i I=l,- --A (3.3.b).-o

The elements of yu are computed on the sub-network composed of the

cells corresponding to nodes (0.1), ... (0,k) in Figure 3.1. Similarly, the

Ielements of y are computed on the subnetwork composed of the cells

corresponding to nodes (1,2), -' (1,k). The cells (0,ktl) and (1,kt1)

are delay cells that align the corresponding elements of y and y such

that they can be appropriately added in the cell (O,kt2). The operation of

the network is formally specified by providing, for each cell, a set of equa-

lions relating its output sequences to its input sequences. For the nodes

in the homogeneous set ((O.g) g=1, .. ,k) the generic causal equations

are -

[a= 2 [g 0 COgJ g=1'.- (3.4.a)°O,g t1 [O,g o~ g

Pogt1 = P Po,g g=1.-..,k (3.4b)

i,g = CO,g g=1. k (3.4.c) P

where the operator 0 is an element-wise operator obtained by extending the

usual multiplication operator * from R to R by adding the following rule:

5 0 x = x 0 a = a if x#0 and a 0 0 = 0 0 a = 0

Note that 0 is not a 6-regular operator in the sense defined in Section

2.1. However, because the result of the multiplication of any unknown

number with zero is zero, the operator 0 may be naturally implemented by

using a standard multiplication circuit and treating 6 as a don't know item

rather than as a special symbol. With this, each node in the above homo-

geneous suD-network represents a multiply/add cell augmented by an
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appropriate delay.

Similarly, the cells corresponding to the nodes in the homogeneous set

(0,.g) g... =2 .-- k) are specified by

0flt n p1 'g g2 - -A (3.5.a)

Finally, the cells (O~k+l), (1.k+l) and (O.k+2) are specified by

0 0.k +2 = ( ka Ok (3.6.a)

PO~kt3 = n EPO.ki2 + O~k+2 1  (3.6.0)

The system composed of the equations (3.4). (3.5) and (3.6) describes

the operation of the entire network. In order to obtain an explicit form of

the network I/0 description, we should solve this system and obtain a direct

relation between the network output sequence of interest, namely p Ok +3'

C#and the network input sequences p'1 0'~ p1 .a1.,2 and Co'g.

g =1,.. k For this, we start by solving (3.4.b) and (3.5.a) to obtain

111 ~ 2 (g - 2 )
0 1' 0 a1.2 g =2. -,

We then substitute these formulas and equation (3.4.c) into (3.4.a) and

(3-5-b), which gives the following difference equations

0~g~ =2 (Co [a + l 1) 0 C0g g=1.' .k - (3.7.a)

P1.g+i = n [pg + n 01 0 n C g =2,. - - (3. 7. b)

The solutions of (3.7,a) and (3.7.b) may be obtained by applying Lemma

1 in Appendix A. More specifically, with c=2, s=1 and rk+1 in Lemma 1 we

get

.5
00. 1 nk ao' + E n' 1 [nk~ Po.1 0 4 .k -/t+1 (3.8. a)

0.1 +=

. . .. . . .
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while for the values c=). s=2 and r=k+ I in the same lemma. we obtain

_P kt1 = £k-1 n i-1 2(k-j) a n I (3.8.b)

Plkl P1,2 t t2 0 8
/=2

Now, from (3.6) follows the network I/0 description in the form

POokt3 = nl Pl,kl t O,k (3.9)

where P1,k+1 and do,k are given by (3.8.a/b).

For the proper operation of the network. the input links s0,1 and r1 .2

are permanently set to zero, that is we always have

0, P1.2

where t is the zero sequence defined in Section 2.1. With this. the equa-

tions (3.8) simplify to

k 2 i"-'-I
..,okn1 n 12 p0 1 0 C0k_/1 ]  (3.10.a)
:- Ol,k t I  J=1 P 1 [R2i -/  I

k i-I 1 2(k-=2 , 2  0 n O (3.10.D)

P1,ktI = 0 1.2 O~ 0k-j t21  30
•i=2

In order to perform the matrix/vector multiplication, the elements of the

(g-1)S t off-diagonal, lg<k, of the matrix A should be supplied on the

network link z followed by an appropriate number of zeroes. More

specifically, the input on these links should be

- 2(g - ) g l •=1,. ", (3. 11. a)

where T(a )=k and9
" a'Ct) = at.ttg_l tOk-gtl

,0; a (t )=

... 0 t >k -g tl

Moreover, the elements of the vector x should be supplied on the links

.r1 and s1.2 according to

P"'1 = (3.11 .b)

* ;,. L -. *. .' . ---, , .' ... .. .. . . > . . . .-- . . .** - - .- .* . * * . . . . . . .. • ' "
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02 = 10 (3. 11.c)

where T( )=k and f(t)=xt. Note that S1, 2 carries the same information as

" 01 delayed by three time units. Hence, by adding appropriate delay Cells,

we may replace these two input links by only one link.4

As the next step in the verification technique we have to substitute the

above input sequences into the network i/O description and to demonstrate

p. :.' that the sequence P0k 3 does contain the elements yi" i=1.*-.k, of the

product vector y. We first substitute (3.11.a/b) into (3.10.a) which gives

0 0.ktl = r n2i Enk-i f 0 l 2(k-j) %-i 1]

-,=/= k
= k nk-i ]

= 2k. E 8
,1 1= '

-. where 8. = t(k-j) Ok hat is T()=k and

-i4(ttk-j) ak tl(t) = at,ttk- i  Xttk- i  t i

""" (t) = It>
The element-wise addition of the sequences .j. 1=,.- - .k in (3.12)

then gives

2k U- (3.13)

U U-

where T(71 )=k and 71 (t) = 8(t). However, for .t we have (t)=0.

from which we get

77 (t) = E attk- Xt.k-i

I=t
a"' = ~ Xq = Yt

qt q :t

where in the last line we replaced the summation index j by q=tk-i.

Analogously, we substitute (3.1 l.a/c) into (3.10.b) and find, after some

• .-. 4 -.

" . -a a a
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sequence manipulation, that

P1.ktl- ktl 71 (3.14)

where TO7 )=k and 77 (t)=y.5

Finally, from (3.13) and (3.14) in (3.9) we obtain the output sequence

2k +2
-. kt3 = 11 7) (3.15) .-"

0.h
? where T(7))=k and 77(t)=Yt . the tth element of the product vector y=Ax.

This verifies that the network will indeed produce the elements of the vector

y according to the timing specified by equation (3.15).

Remark : In some applications, as in the one described in section 9.2. the

elements of the matrix A cannot be supplied at the high rate specified by

equation (3.11.a). More specifically, we assume that the input sequences on

the links zo.g, . ..k have the forms

C, -g = 2c(g-1) eC-1 gl,...kn eo =,-

for some integer c>1. In this case, the network may still operate correctly

-.. if we change the period of the synchronizing clock such that the new

period is equal to c times the old one. An alternative solution is to

change the delays within the computational cells in order to ensure that the

elements of the vector x indeed meet the corresponding elements of the

matrix A at the appropriate times. This is accomplished by replacing the

specifications (3.4), (3.5) and (3.6) by

' .°-t1 - n2c ..-0
"'"~gt = [°Og Pog -• 0,gt1 0 C O,g g=1,....k
.0 O o0 g t 1 r) P o'g g =  1. " .k

" ,gtl = ti a g=2.-,.k

Plgl n Plg t 01,g 0 Clg] g=2..k

0 " t- 0 A t1
Okti ck

PO,k t2 ,k tl

.. ,

S.'" " ,' " " " a ? ',: -: ' .""' - ,..-. '' . ',' : ' " . ," . - -' ., . -" . " ,- - ... , , ' " .- . ' " .-. '" - ' " " ' - -G -'.'
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'O,kt3 =  1 ' O,k t2 I

In addition, the timings of the data on the other input links ro, 1!and

S 1.2 have to be modified accordingly to

PO'1 = ec - I

.2ct c-1
1.2 0

Following the same steps as in the case c=1, we may obtain the out-

put of the modified network as

2ckt2 c-i
O kt3 =

which is a generalization of (3.15) for the case c>1.

l 3.2. A back substitution network.

In this section. we apply our verification technique to a systolic network

that contains two different types of computational cells. namely the back-

substitution network suggested in (311. This network performs the back sub-

-: stitution operation to solve the linear system of equations

L u = Y (3.16)

where L is an n xn non-singular, banded. lower triangular matrix with the

(half)-band-width k+1 and y is a given n-dimensional vector. The solution

of the linear system (3.16) is given by the formula:

iI-

.u ( -= k u-) / kii
lh , - j t .

"i. where I. is the (i) h element of the matrix L, and y and u. are the ith

elements of the vectors y and u. respectively.

r'E Figure 3.2 shows the graph of the suggestea network. It is a 2-

partially homogeneous network, composed of k multiply/add (M/A) type cells.

K

-a s. ' * .'.s*.*. • ,.,, _ .W ' ... " .°,''. • "o . ... " . . ,.-
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SI ,a2  ai k kk-+

'so]. S1 rI 2 r i -1 +1 k _I k+]

e nFigure 3.2 - rhe graph for the back substitution network

and one subtract/divide (S/D) cell. The computational cells are labeled by,.integers Such that the cells 1 through k are of the M/A type. and the cell

,, .-. 0 is the S/D cell. As for the i/O cells, we must be careful to assign .

.. labels to the sink cells because these labels will be used to identify the

"-'-', network OUtpUt links. The labels given to source nodes are immaterial as ,

"-'- they do not affect the verification procedure. and consequently are not
shown in Figure 3.2.

in the regur lyu ho in figure 3.2. the edges directed to the

sout north, east and west are given the colors a tbyr and s. respectively.

... The set VI of interior nodes in 0 is divided into two homogeneous subsets"-,
V1 40J and is(ii1...k). The operation of the cell represented by

I IN

abnode '0' is described by the causal relation

network= p lo - ] g to (3.

hey and the operation of any M/A cell represented by a node i ti k is

described by the generic i/O description -n

- (0) and V Pi =l .. k (3.18.a) ,

i- 1 O = 0 [a i  (P a i il i = 1, ' ''-,k (3 .18. b)

*where the e was defined by the formula (2.2).

..."1

. . . . . . . . . . . . . . . . .. - . . . . . - . . . . ' -' \ ,
.................................. ,-..



In order to solve the system of difference equations (3.17). (3.18.a/b).

we first write the solution of (3.18.a) as

Pi = rl i1p 1  10i k*1 (3.19)

from which we find that

Pkt1* n p, (3.20)

Substitution of (3.19) into (3.18.b) then gives

G0i (fl0i. i (3.21)

i--1
.. where A =t R 111 , Using an inductive argument similar to that in

Appendix A for the proof of Lemma 1, we can show that the solution of

(3.21) is

a .~ n a .n/ 101 i P1  (3.22)

whereV is defined by £' ?[ 7 11+ 7? 2 t....*t7 k.

For given p,. the network output sequence ~k1is easily obtained

from (3.20). The next step will be to eliminate a0from (3.17) and (3.22)

and to obtain p1 explicitly In terms of the network input sequence Sa 0 k' R

and a. P 1=0.. *. -. Unfortunately. if we try to soive (3.17) and (3.22)

a simultaneously. we will obtain a recursive equation in pls. which is very dif-

ficult to manipulate in general. For this reason. we consider only

specific forms of the network input sequences. namely those required for

the proper operation of the network. They are given by

k *1
a. n e X. i=0.* A (3.23.a)

n6 k 7 (3.23.b)00

with TO. (X n-i. T(O) T(71) =n and



.* a -+. ta a - a. A P A - P . - . * . . . -

.s'40

i ) t*it lI t4n-i

7 (t) = t l4t~n

S(t) = 0 l(tn

Substituting (3.23) into (3.17) and (3.22). we find that

P- = f (lk k 01 / 171 X01 (3.24.a)

= k e ) e 2 / 2/1 p1  (3.24.b)
j=1

Since O-x=8 for any xeR 0 . (3.24.a) Implies the existence of a sequence

such that

kt)
P1 = e (3.25)

whence, by (3.24.b), we find that

k k
'0 = n e [L ' nl A

.... 
1.2/

where we used property P4 to interchange 0 and e. If in addition we let

k
-" ® ' (), AX (3.26)

1.: =1/

then we can substitute for o0 and p1 in (3.24.a) and obtain

"l " e n [Ok e 7 k  k
n..e.= ni e7- e' y/i e X0 ]

which reduces to

- = 7- / (3.27)

For an explicit description of the sequence v, we need to examine

(3.26) more closely. We start by evaluating the product term. namely

I n /

where

T = amin( TO.. . T(V) 4 n-i (3.28.a)

e and

....



41

* AL(t) ?~.t) *4(t)(3.28-b)

3This enables us to rewrite (3.26) as

k
Y= L E% n/ (s 3.29)

IFrom (3.29) and the definition of the S' operator. we conclude that

T (Y) = max(T(L) , TQOt)ti) = n. and hence from (3.27) that

T(4) = min(T(77) .TCY) . Tok0 i n.

-~With this in (3.28-a). it is easily seen that TOa. n n-j. Now. we apply

property P20 to (3.29) and explicitly describe ~Y by

=VY T(L) =n

and

'Y()U= t =2.3..k

U s(-0) t =k t .kt2.,n
"I .** =1

.1..~.Then finally, with these specific descriptions of 77. Xand Yv. the expli-

cit form of the sequence 4 in (3.27) is found to be

that is

Y j=1tt=

()(Yt 4(t-i) I' /'k
* j=1

A comparison of this expression with the formula given in the beginning

'4of the section for the solution of (3.16) shows readily that

wriere T 4 i3n t 't.
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3.3. A sorting network.

The sorting network (32] described here accepts an indexed set

X= (X ... ' kX ) of k different real numbers. x. eR. IEK=(1..ki. and produces

as output the same numbers sorted in ascending order. Figure 3.3 shows

the general graph of the network and the labels given to each node. In

the figure. the edges directed to the right and left are colored p and s.

respectively.

For any jeK. let .. -,y, be the result of sorting the elements

X ... .X of X in ascending order. Then for all Ui.1) of D=((i~jpcKx:K.

14i 4i 0(~~). the ranking function f:D-X is defined by f 'j=

With this, we will prove that if the network input sequence 77 is given

by

k+2 Vk"Ak-
node od

k k-1 id:

k+1 Sk+l S k k-i S 4 + 1 S S3  2

Figure 3.3 -h graph frthe Sotig etor

e 4 (3.30)

where T (4) =k and (t) =X. then the network output sequence akt

has the form

0kt 8 77k- (3.31)

where T (77) =k and 77(t) =f (t~k).X
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,', "The network considered in Figure 3.3 is a 2-partially homogeneous net-

work. The cell labeled '1' is a simple latch cell whose operation is

described by

.$ -: 02 = r1  (3.32.a)

L :: .. while the I/O description of the cells i=2.....k is given by

i"= fl max (OT,.C.) (3.32.b)

n, =f min (V ~a) (3.32.0)

where max 6 and min were defined in section 2.1. In other words, the

cells i=2.....k are comparision cells which operate as follows: At any time t,

if neither one of the two inputs el(t) or 7ri(t) is a don't care element 6.

7then the cell compares the two inputs, and produces as output at time t+.

the largest and the smallest of the two numbers on the links pi 1 and

s, 1 respectively. However, if any of the inputs Is 6. then the cell acts as

m  - a simple latch cell, that is, if o(t)=8 or ir/(t)=6 then

77, 1 (ttl) = w(t) and ait(ttl) =a 1(t)

To obtain the network i/0 description, the system of equations

(3.32.a/b/c) should be solved for a However, the recursive nature of

(3.32.b) and (3.32.c) makes this very difficult, if not impossible. One possi-p.-.
-=.ble alternative is to suggest a tentative value for the sequences i. and a.

I P

and then to verify that these suggested solutions indeed satisfy (3.32). Of

course, any assumed value for 17 should reduce to the input sequence

* (3.30) for i=k.

Let us assume that 77 and a. are given by

k Iii k- e a. 14i~k (3.33.a)
kti-2

_.e _ 24i~ktl (3.33.b)

where T(a) = T( i ) k.

,; ,..,: ,. .. .. . . .
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Xp

t
Smax(x. f .t-j )) I t~k

and

k- L

fz(t (tk =1 1.mx( t-.-) <X

But from wil ( 3be. woe b ta r 33 dosstsf=23). Fr 1,(.3a

wreue to12  n 3()=f(~t.1t hc rvsta

wher a )=n.henced

Sbiute f(3.) i the r it han esien of (xI2.) and denot fllw the t

seuec by p.11 This gives(t1tD=f(~ Hne e a rt

Bumaox (..) we obtainfo i=

k
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,P- Ok" p = e 'Y (3.34)

where yi, max (a, , 11 . By definition of max . it follows that

T(Y) ,TU k, and

Z-'..,::W "- (t< t~i-l
... i i(t) = L y()= max(ai(t).8i(t-i +1)) i- 1<tVk

Hence with the definitions of ai(t) and a(t) we obtain

yi(t) = max(x t . fx(t-i+i.t-1)J t=i

-max(max(x t . fx(t-it-1)) fx(t-i*1.t-1)) i<tk

Because of max( max(a.b) c) = max(a,b.c}. and f (t-i.t-1)< f(t-

itl.t-1), we may rewrite yi as

,' "" ,'.iJ xt  1 t 4 i - I
, , . 'VlPi(t)

,','&.," ' "'" [ max(x t  fx (t-(-i-1)-)} i-l1t0

t*

from which we find that "yi(t) = a i 1 (t), and hence. because of (3.34) and

(3.33.a). that p = 7Tr 1 . This proves that (3.32.b) is satisfied for the

values of oi and 7i given by (3.33).

Finally, to check that (3.33) does satisfy (3.32.c). we substitute (3.33)

into (3.32.c) and denote the resulting sequence by r. This gives

k m i ki -2) min 1.0, e 24 0
m8 mi (a. = n

In view of

min(a V 1 i3s = 0i

where T(Wp) = T(8) = k and1 Io=. ,

p.P
._: min(o~t+:-1) .8(t))} l(t k - -1)

0.e tt
-*. '' we write

'...;

It. .- ,'
'"'K = " " " ° " o ' ~ - o - - - - ' -. % , . , " . " % .o - -= I ° • • . . , . . •
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kt-tD."'. flk(i tl)-2 ego. (3.35)

From (3.35) and (3.32.c). it follows that r = a only if P= To

prove this, we substitute the definitions of al(tti-1) and 0llt into vi(t)

Sand obtain

= { min(max(x ti- 1  fx(t-1tti-2)) f X (t,tti-2)) Itk-(i-1)

",'" - f (t,k) k-(i-1)<t~k""

xx:,, ,,But from Lemma 5 in Appendix A, and the fact that f (t,tti-l) =f (t,k) "
"=-. X X.•i

for t=k-i+l, we may write ol(t) as

t fx (t ,t~i -1) 1 k-

" !fx (t ,k ) k -i Qt 0;

It follows that Voi(t) ,8il(t) and therefore that r = al 1  This completes is

the proof that the sequences v. and a. of (3.33) indeed satisfy the system

of equations (3.32).

Now that (3.33.b) is known to be a valid formula for the sequence a.
Cj,

we can easily obtain the network output sequence oktl by setting i=k+l.

This gives

" =2k -1 e a

where T( 2 ktl) = k and 0k (t) = (t.k), 14t~k which is identical with

the expected output sequence (3.31).

After illustrating our verification technique by various examples. we

- investigate in the next section the solvability of systems of causal equations.

Clearly. this is a crucial issue determining the general applicability of the

technique.

.4.

- . .•

* - *-..--- i-. t e. .
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3.4. Analytical Solution of Systems of Causal Equations.

In this section we discuss the existence of analytical solutions of sys-

tems of causal sequence equations. Here we use the term sequence equa-

tion in a restrictive manner to indicate an equation in which the left side is

a sequence and the right side is a sequence expression. This is the only

type of equations needed for modeling the operation of systolic networks.

We begin by defining the dependency matrix which describes the struc-

ture of a given system of sequence equations. Then an iteration operator 7

."'v- V is introduced and, with the help of this operator, it is shown that the solu-

tion of any system of causal equations can be expressed in analytical form.

"w Finally, we present some examples that demonstrate the applicability of the

iteration operator for the analytical verification of systolic networks.

3.4.1. Definition and Existence of Analytical Solutions.

In order to discuss systems of equations on sequences without referring

to the network that are modeled by these equations, let Q denote the set

of all sequences that appear in a given system of sequence equations.

This set Q is partitioned into three disjoint, mutually exclusive sets, namely,

the set of input sequences Q the set of output sequences Q and the
P, 0

set of intermediate sequences Q Here, an input sequence is a sequence

that does not appear on the left side of any equation in the system, an

output sequence is a sequence that does not appear on the right side of

any equation in the system. and an intermediate sequence is a sequence in

Q which is neither in Q nor in Q
p 0

Accordingly, a solution of the given system of sequence equations is

" "defined as a set of formulas, involving only well defined sequence operators,

that expiicitly describe the sequences in in terms of those in Q.

Here, a well defined operator is understood to mean any operator whose

.-.:: 9

1- . I -
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image can be obtained from its operands using a deterministic expression.

The operators defined in Chapter 2 are examples of well defined operators.

Let q ' qo and qr be the cardinalities of the sets Q P, Qo and Qr"

respectively. We enumerate the sequences in Q by integers

*l .q tqotq. such that for any sequence iE ,

f. eQ if i q
I 0 0

f. Qr if q <i<qo0aq r

f" EQ if q tq <j <q tq rq
I P o r o r p

The structure of the system of equations can then be described in

terms of the dependency matrix A which is a binary, square matrix of order

qtq tqp with the elements

1 if j appears on the right side of the equation describing .
a, -

. 0 otherwise.

For example, consider the following two systems of sequence equations: %V

System S

ti= r1(43 '6

*2 = 4 5f""" 3 r r3( 4 4 f6)

f r Q 4

System :

This is the same as system S except that the last equation is replaced by

fl 5 =  5(f 3 16 t 7)

Here r. i1... .5 and r 5 are sequence operators.

In both systems, we have 0 = 66.7 } .  
° = 1 and r

(43't4,454 and the dependency matrices are

. . . .. . . . . ..- . ,
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" " 0 0 1 0 0 1 O" "0 0 1 0 0 1 0'
0 0 0 1 1 0 0 0 0 0 1 1 0 0

05 00 0 100 00 0101 0
A- 0 0 0 0 1 0 A 0 0 0 0 1 0 1 (3.36)

* ""0 0 0 0 0 1 1i 0 0 1 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0

LO. 0 0 0 0 0 0 0 0 0 0 0 0 0
for S and Y. respectively.

From the definition of the input, output and intermediate sequences. it

* , is clear that any dependency matrix A can be partitioned into the following
Sform:

0 A Ao.r O.P

A 0 A A
•.rr r.p

":.:, <0 0 0

where the dimension of the sub-matrices Ao,r . A o'. At,r and Ar p are

q PXqr qp Xqo qr xqr and qr xq. respectively, and each 0 denotes a zero

sub-matrix of the appropriate dimension. This decomposed form of the

matrix A shows that our ability of expressing explicitly the sequences in Qo

in terms of those in Q depends only on the structure of the submatrix
p

A In other words, If A Is a strictly lower or strictly upper triangular
r,r r,r

matrix, then by back substitution, we can easily express the sequences in

.- r in terms of those in Q . This in turn enables us to relate explicitly

the sequences in Q to those in Q for any form of the submatrices A
0 p o .r

and A . For example. the matrix Ar, corresponding to the matrix A in

O (3.36) is strictly upper triangular. Hence, for the system of equations S. we

obtain by back substitution

Y "4 = r4 ( r (Q6 ' 7) .7 ) = A4 (f 6 " 7 )

te 4 3 = r 3( A4 (4 60 7) 6) = A3(407)

which leads to

2-,
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r A(4Q )AC 6  41 1 3 6'7 6 = "7
f2 2 ( A 4 ('0. 7) .A 5 ('0. 7)) = A 2 ('0. 7)

where the operators A. i=1.4 are defined in terms Of the known sequence

operators r.. and hence are themselves well defined sequence operators.

It should be noted that the structure of the matrix Ar depends pri-

marily on the numbering of the sequences In Q More specifically, when-

ever there exists a numbering that results in A being strictly upper or

• ... r..,-

strictly lower triangular, then, as Stated, It IS possible to solve the

corresponding system by back substitution. This situation applies only If the

system of causal equations does not contain any direct or Indirect recur-

sion.

On the other hand, if the system of equations does contain recursion.

then for any numbering of the sequences In Q 'the matrix A cannot be
r r.r

strictly upper or lower triangular and hence. the simple back substitution

scheme cannot be carried to completion. For example. in the system of

equations S. we cannot express the sequences and f4 in terms ofr

and t47 unless we have a method of solving the coupled equations

* 4 = 4 (4 3 -4 6 47) (3.3 7.a)

'...,

43 = 7'3 (14f 6 ) (3.37.b)

Swhere A and A are well defined operators.

Yet, in the special case when the operators A3 and A4 are causal

operators. it is possible to calculate the sequences 4 and j for any

*given specific sequences f. and 47. In other words. the equations

(3.37.a/b) have always a solution. This is an indication that our inability to

express this solution analytically is due to the fact that our notation

suppresses the time dimension from the sequence equations. This motivates

the introduction of the Iteration operator.

' ."-r ,r



3.4.2. The Iteration operator.

It can be easily shown that the solution of any coupled system of

equations may be obtained if we have a means of solving recursive equa-

.- *; tions of the form

c = r(. 1... .n) (3.38)

where r is some sequence operator. For example, the solution of the cou-

pled system (3.37) may be obtained if we can solve the recursive equations

resulting from the substitution of (3.37.b) into (3.37.a). namely

C4= r4 (r 3 (4 4 1.6 8 .. 7) = A 4, .07)

In general, the solution of (3.38) may not be well defined. However.

systems of sequence equations resulting from modeling systolic networks

have the nice property that they contain only causal operators. Hence. we

will consider (3.38) only for causal operators r.

Theorem 3.1: Given a causal operator r:[the solution C of

C = r(c. t .. n) (3.39)

is well defined.

Proof: We prove this theorem by means of the following procedure for the

computation of C:

ALGI

V.

:: -, !1) Let ao 0

.- 2) FOR k=1.2.-- DO

_ 2.1) Compute the sequence a k as follows

...- .1; % _ (t) t<k.
"'( Er("l . .(an)](t) t=k

. ak(t) = 1 1  '

6 t>k

' ' .2.2) Set 4(k) = a (k).

. , -.
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S.V.

In order to prove that the sequence 4 computed by ALG1 satisfies (3.39)

we define the step operators S k:Ro -R for k=0.1.2,'*. by
JS

:.'.S 0  € = 8

and. for k>0. by

C (t) If 1 t k
(S (t) =k ; if t >k

With this. it is directly seen that, for any t. ak(t) = [Sk C](t) and hence

that a k = Sk. From ALGI. we then have

"4

C(t) = at(t) = (r(St_1 C. 1 ".' n)](t) (3.40)

However, the definition of causality implies that C(t) may depend only

on any element (St 1  C]i) with I<t; that is, we may replace St_1 C in

(3.40) by C. This gives

C(t) = [r(c. 1 . ".",).(t)

and proves that the sequence C computed by ALG1 indeed satisfies the

equation (3.39). S

Theorem 3.1 proves the existence of a solution of recursive causal

equations and gives a procedure for its computation. Our next goal is to

provide a suitable notation for expressing this solution.

Definition: Let -R be a given causal operator. The iteration

operator I applied to the image sequence r('i7.... ."n with respect to
r

any of the arguments 71r' 1r~n+l shall be defined by
0r:

C 1 1r r(i'"" .'.r" " 'Rn t1 )

where for any t

-n(t) = [r(7 ,.. . ... '7n tl)](t)
_.

.- ..

t.=

.....................................
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Using a procedure similar to the one given in the proof of Theorem

3.1. we can show that the image sequence C in the above definition is well

defined. Note that the sequence 71 In the combined operator

. " Ii/r:[R- . - is a dummy sequence which is needed only to indicate the
Or

argument of r to which the recursion is applied. In other words, the argu-

ments of 17 rr are only *1 , . 71r t1r+ 1  t V With this definition.

we can now prove the following theorem

Theorem 3.2: For any causal operator n  -. R the solution of the

recursive equation

"" ., ; C = r(C. 1.. ". n

is given by

, C = r71/ " . .  " n

Proof: From the definition of the iteration operator we obtain, for any t'l

C(t) = [7 r( t ., n)](t)

= [r(. 1  . n)(t)I.
* which directly implies that

- Theorem 3.2 provides a means for expressing the solution of recursive

causal equations. Its application to the verification of systolic networks.

however, depends on our ability to manipulate expressions that combine the

iteration operator and other sequence operators. The following theorem

provides the basis for such a manipulation.

Theorem 3.3: If i - is a causal sequence operator, and :R is

any sequence operator with the property that

a ,.

-,
* 2 . ° • o , o • % . ' ' % oa. °!° - .a, - . . • '-' . " o % , , ' " , ' . " o - . o . . . - ° . - . ~ . . " . , , o , , oa. . . . " , , , ., " . - , . . , .',- .,: .: , ,, -. ,. -.. . ,, ..-. ... ...- . . . ' -v - -. : .- '
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A(0I . 01.. .,,) - 0 A'(C. l.~ .. ,.n) (3.41)

where A' may or may not be identical to A. then

I/ A(7.Ol..-A ) = 017 A'(1.1 .... (3.42)

Proof. We write the right side of equation (3.41) as 0 Y. where Y is given

by

'Y = 11. A '(7'.1.-.., n ) .

By Theorem 3.2. we know that y also satisfies

Y j, A'(0'.l

that is
.

0 11 7 A'(,Y.fi,--.-In
77

By the hypothesis (3.41) this reduces to

which by Theorem 3.2 has the solution

S'Y = I A(7. .Of

77 n.

Evidently. this is equal to the left side of equation (3.42). M

We next give some examples that illustrate the applications of the itera-

tion operator to the verification of systolic networks.

3.4.3. The iteration operator in the verification of systolic networks.

In this section, we present two examples for the application of the

iteration operator to the derivation of the I/0 description of systolic networks

that are modeled by mutually coupled systems of equations. The first net-

work is the back substitution network that was verified in Section 3.2 for

specific input sequences. Here, we will derive an explicit I/0 description for

LI

p°
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this network and show that the iteration operator does simplify the verifica-

l tion of this network. The second example illustrates an important fact.

namely that even though it is always possible to obtain analytical formulas

for the I/0 description of systolic networks. those formulas may sometimes

* L be very long and cumbersome to a point that they are complicating the

% .verification procedure rather than simplifying It.

Example 1:

Consider the back substitution network of Section 3.2. In that section,

we did not obtain explicitly the network I/0 description because of the cou-

pled equations

P I = l ROO- 00] / a (3.43.a)
.-i k

0= n k [a n P (3.43.b)

However, by substitution of (3.43.b) into (3.43.a) we may obtain

.- .p 1 = (.8 - M o a @ ' [az n" Pl1111 a IO
0 k 0=

-" which by Theorem 3.2 has the solution

k k
Pl= 1 Me - nk S , f'i i " lu]]] / @a O[

""' •j=1

and leads directly to the explicit I/0 description

k- 

j 
1

(n 0 (la. n (A) wJ]aJ (3.44)
-'.',,' i=1

Equation (3.44) describes the output sequence pktl in terms of the

-. .input sequences a. i... =0 .k, and O.In order to verify the network for

the specific input described by equations (3.23). we substitute these

sequences in (3.44). This provides*k
k k t -1 kP' I= n [[ - nket * L ' ncnk iex n nY-w / n e9kol

,,t. j= 1

o.

,o. . o . • .,. .. * . .,.... . -,. . . *.; , . . . . ..m " " ". "."." . ".". *.". . .".". . .
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and now the application of Theorem 3.3 for factoring 0l e from the

operand of I gives

-2k k
"kt1 = e I [[77 - [n E' fiX X01

nl2k +1 e

where

k
,(t) = (77(t) - (&(t) 0 J' [ 0 U11(t) ))/X ot)

i=1

This leads directly to the expression for (t) derived In Section 3.2.

EXAMPLE 2:

In this example (Figure 3.4). we consider the special case k=3 of the

sorting network presented In Section 3.3. The operation of the network is

modeled by the causal equations

P..

-:.":...
33 e

..-. '...

Figure 3.4 -A special case of the sorting network.

S02 = //1(3.45.a)

03 = f min (T a ) (3.45.b)36 2 2
04 = rl mina(773  03) (3.45.c)

7 =) max (r 2r a2) (3.45.d)

0 2 = 0 maxo(ff 3 , 03) (3.45.e)

In order to express the output sequence o4 in terms ot tne input

sequence i 3 " we start by solving (3.45.a/d) for a2 . By Theorem 3.2. a2 is

.0,S given by *1
02 = f max(I (3.46)

x(2 7 7)

.,. ...-..... . . ... . * * .. . .



~Ig 57

We then solve (3.46) and (3.45.b/e) for a3 and substitute the result in

(3.45.C) to obtain the network I/0 description In the form

0 4 = flmin8a(V3  1 min (maxa(IT3.C) 1277 max (lmax(T 3 ,C) . 77))) (3.47)

Although (3.47) describes explicitly the output in terms of the Input. it

may be very difficult to use It for the verification of the network for given

inputs, especially if the size of the network k is to be kept as a parameter.

As a matter of fact. the non systematic approach followed in Section 3.3

proved to be more effective for the formal verification of this sorting net-

work.

"K7

h...

V.

1 6%

.• . ..
. .
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4. COMPUTER SOLUTION OF SYSTEMS OF CAUSAL EQUATIONS.

It was shown in Section 3.4 that we can always obtain analytical solu-

tions of systems of causal equations that model systolic networks. However.

our tools for manipulating sequences are still limited and. in many cases,

we are not able to derive the output sequences in a form that may be

compared with the expected output of the network. In order to alleviate this

problem, we describe in this chapter a computer system that was developed

A-

for solving iteratively any system of causal sequence equations for specifi-

cally given input sequences.

A simple language called SCE (Systems of Causal Equations) is used to

provide the system of causal equations to the solver. It will be described

in Section 1. The equation solver itself represents a syntax directed inter-

preter that executes any correct SCE program. This interpreter is outlined

in Section 2. it reads the elements of the Input sequences from an input

file, and calculates the elements of the sequences on the left side of the

equations specified by the program.

It should be noted that all data sequences considered here have infinite

length out contain only finitely many elements different from the don't care

element 6. Accordingly. an upper bound MAXT is assumed to be given by

the user for the maximal index of non-0 data items of all sequences. In

other words. elements beyond MAXT In any sequence are considered to be

equal to 0.

Although the generality of the solver allows it to be used for wide

range of tasks, its immediate application will be to simulate computations on

systolic networks. For this, an SCE program is written which implements

• ",-'
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* * the equations for the operation of the network. and then, an input file is

. created that contains the elements of the input data sequences. Now a run

of the SCE interpreter provides the elements of the output data sequences.

This approach to the simulation of systolic networks separates the internal

details of the simulator from the concern of the user. It also has the

advantage of allowing the user to begin with a partial solution of the system

of equations modeling the network and then to use the SCE interpreter on

tne portion of the system that could not be solved analytically. As an

example. we show in Section 3 how the operation of a network for the LU

decomposition of a symmetric banded matrix may be simulated by means of

the SCE interpreter.

4.1. The SCE language for specifying Systems of Causal Equations.

The SCE language is a simple expression language augmented with

some input/output facilities and looping capabilities that provide for efficiency

in the writting of programs. In its current form. SCE may be used to

model the operation of a special class of systolic networks in which the

units of information are real numbers. However, by the addition of new

rules to the grammar, it is possible to model other types of systolic net-

worxs at higher or lower levels of architectures.

,- By tne first rule in the grammar given in Appendix B. it is readily seen

that an SCE program consists of the following four parts: 1) The declara-
tions. 2) the input part. 3) the programs body. and 4) the output part. In

the rest of this section. we will discuss the semantics of the language.

. Terminal symbols in SCE (see Appendix B) can be classified into four

categories. namely. special symbols (e.g. +. -. . ... reserved words (e.g.

cO6. OUT...). identifiers and constants, where a constant is either a posi-

* d. tive integer or a positive real number written in floating point format.

I.a 
-

.. -
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In order to ensure a clear distinction between Identifiers and reserved

words in SCE. we have chosen all the reserved words In the language to

start with capital letters. On the other hand. any string of alphanumeric

characters starting with a lower case letter can be used as an identifier

with the understanding that only the first six characters are significant.

Identifiers in SCE should be declared In the declaration part of the program

to be of one of the following types:

1) Parameter (rules 3-7): A parameter is assigned an Integer value at the

time of its declaration and this value is substituted textually whenever the

identifier appears in the program.

2) Index (rules 8-11): An index in SCE is an integer variable used in loop

control and in the selection of elements of sequence arrays.

3) Sequence (rules 12-19): Sequences are represented on the machine by

vectors. An identifier of type *sequence* may be associated with either a

single sequence (rule 16) or with an array of sequences (rule 15). For

arrays of sequences, the dimension and the lower and upper bounds are

specified in the declaration by enclosing these bounds in curly brackets.

For example, tie following SCE statement declares s as an n dimensional

sequence array

SEQN s ( :U l "" :Un

where and for he .th
:-J. where /I and u,, i=1. .. ,n are the lower and upper bounds for the

0 dimension. Bounds may be negative but should of course satisfy the res-

triction that u)i. We also note that there is no limit on the dimensional-

ity of an array.

), After the declaration of an array of sequences, its elements may be

identified (rules 38-41) by using the usual selection notation
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ps(P ,.n where each Pi has to fall Into its corresponding range.

that is I P u

In the context of the abstract systolic model, a data sequence is asso-

. ', clated with a communication link which Is identified by its color and the

L label of the node at which It terminates. In order to simplify the SCE

specification of a systolic network, we label the nodes in the network by

n-tuples of integers (v 1... . n ) with some fixed n. This enables us to
pn

group all the sequences associated with the links that have the same color

in an n-dimensional array. Of course the color of the link may be used to

.-..
identify the array. With this. the sequence associated with any link yvl .... n

v1* ...-.

is simply the element (v, , .. vn ) of the sequence array yO.

Although this leads usually to a very clear SCE specification of a sys-

. tolic network, it is sometimes inefficient because some of the elements in

_ the array may not be used. For example, in the LU network described in

Section 3. a triangular array of sequences would be more space efficient

than the rectangular array allowed by SCE. In such cases, a more efficient

!77 storage arrangement could be obtained by applying any one of the tech-

niques used for storing triangular and sparse matrices [181.

In addition to arrays of sequences, the language allows the user to

declare single sequences. Three standard single sequences are predefined

by the language, namely the don't care sequence, the zero sequence and

- the unity sequence. The first two sequences were defined In Section 2.1.

- The unity sequence r, as its name implies, is defined by (t)=1.0 for

1t" "T(T) and arbitrary large T(T). The sequences 0 . and T are

denoted in SCE by the identifiers d. o and u. respectively. The user how-

ever may re-declare the identifiers d. o or u if he wishes to change their

definitions,

.
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The input part of an SCE program has the form of a single INPUT

statement (rules 68-73). It serves two purposes; Firstly. it assigns an

Integer value to MAXT. which specifies the number of elements to be con-

4- sidered in any sequence, and secondly. it specifies the sequences to be

read from the input file. Nested FOR loops can be used, to any level, in

specifying the input sequences. For example. in the program presented in

Section 3. the statement

INPUT(MAXT 18 . FOR i=0.3 ri.1) );

specifies that MAXT=18 and that the input sequences are r(0.1). r(1.1), r(2.1)

and r(3.11.

Similarly, the output part of the program takes the form of a single

statement (rules 74-78) that specifies the sequences to be printed on the

output file. Again. FOR loops are allowed.

The body of the SCE program is the part that contains the specification

of the system of sequence equations. It consists of a list of statements,

where a statement may be either a sequence equation or a FOR loop that

encloses a list of statements. Each equation has the form

sequence specification = sequence expression

-.-. where the left side identifies a particular sequence and the right side is an

expression composed of sequence identifiers and sequence operators. Square

brackets may be used in sequence expressions to override the precedence

rules defined by the grammar. Basically, in the evaluation of expressions.

0 the grarrmar associates the highest priority with the operators defined

. directly on sequences. Next in priority is the scalar multiplication operator

followed by the operators ' and '/'. Finally, the operators '+' and
.. are evaiuated with the lowest priority. With these precedence rules the

:.4..: -_

* 4.:.* .-,

[. . .....- . . ... ... . . . .. . ... ... . . ..... .. ._ . .. .
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4. sequence expressions are evaluated from left to write.

Although many other sequence operators may be incorporated into the

-4. language, we only allowed for the following operators:

The positive shift operator n r . written In SCE as 0(r),

The zero shift operator n r" written in SCE as Z(r).

The spread operator er. written in SCE as T(r).

* The expansion operator E. written in SCE as E(r,k},
rks

The accumulator operator Ar 'kS , written In SCE as A(r.k.s) and
The multiplexing operator Mw 1.... written in SCE as M(rw. .wn.

r

Frequently, the shift, zero shift and spread operators are used with r=1.

- For this, the short hand notation 0. Z. and T may be used instead of 01).

Z[1) and TM,) respectively.

The two element-wise operators U1 and U2 of rules 47 and 48 have

3 the same priority as the operators * and / but their semantics are not

specified by the language. As indicated in Section 3. Ul and U2 may be

defined by the user.

[" Finally. we note that rule 55 restricts the operands of the accumulator

operator to single sequences rather than sequence factors as is the case

with the other operators. This restriction is not necessary and was only

imposed because it leads to a more efficient Implementation of the SCE

interpreter. However, it should be noted that this does not affect the

expressive power of the language because we can always define intermediate

sequences to get around this restriction. For example, the sequence equa-

tion

xii= 0(2) x(i-1) t A(1,3.1J [ y(itl) ' T x(i-1)

wnicn is not permitted in SCE can be split into the two SCE legal equa-

.p.4- tions

,'7

06I ?.I-
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vGJ= y~stl T x(,-1"

x(i) = 0(2] x(i-1) + A(1,3.1) v(i).

4.2. Overview of the SCE Interpreter.

As is the case with most language interpreters, the SCE solver has two

distinct phases, namely, the syntax analysis phase which. using a parse tree

of the program, produces an intermediate language program. and the actual

interpretation phase which executes the intermediate program.

For the syntax analysis phase, we used the automatic parser generator

YACC [25] existing on the UNIX operating system to generate an LR(1)

bottom-up parser that accepts any syntactically correct SCE program and

generates an intermediate program in the form of a sequence of tuples. It

is basically a finite state machine with a stack. It scans the input program

from left to right and is capable of reading and remembering the next Input

token (terminal symbol) which is called the look-ahead token. Depending

on the look-ahead token and the content of the stack. the parser takes one

of the following actions;

1) Shift: The current look-ahead token is pushed into the stack and the

next token is read in. Also a tuple describing the action is generated. If

the token being shifted is a special symbol, an identifier. or a reserved

word, the tuple generated has the form (Shift.n). where n is a number

identifying the token. On the other hand, if the token Is an integer or a

real constant, then the tuple generated has the form (Shift-integer.c) or

'Shift-real.r). respectively, where c or r is the value of the constant.

2) Reduce: This action is taken when the parser recognizes that the stack

contains the right hand side of a grammar rule. say rule n. and that this

ruie should be applied at this point. It then pops from the stack the

.5.°
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tokens forming the right side of rule n and pushes onto the stack the token

on its left side. It also generates a tuple (Reducen).

3) Accept: This action Is taken when the parsing process is successfully

V", completed. The tuple generated in this case is (AcceptO).

L .4) Error: If the parser discovers that the program is syntactically incorrect,

it simply gives a warning and halts. Of course. more elaborate error han-

dling actions could have been taken if our goal was to produce a more

sophisticated parser. For the details and internal forms of LR parsers, we

refer to (2].

The second phase of the interpreter reads the intermediate program

(sequence of tuples) and reproduces the actions taken by the parser on an

action stack. Simultaneously, an adjoint value stack is used to store tem-

porary values needed in the interpretation. In Appendix C, we give the

complete listing of a C program for the second phase of our SCE solver.

and in the rest of this section we will outline the main features of this

solver/interpreter.

g• - The program uses a location counter "location* to indicate the inter-

mediate tuple being interpreted, Starting with location =1, the interpreter

reads the tuple pointed to by "location", takes a certain action, increases

r. location by one and then repeats the above cycle. The action taken In

"ach cycle depends on the type of the tuple being interpreted:

1) If the tuple is of the type (Shiftn) or (Shift-integer.n), then n is pushed

into the action stack.

2) It the tuple is of the type (Shift-real.r). then r Is pushed into the value

,tack and a zero is pushed into the action stack.

3) if the tuple is of the type (Accept.0). then the interpretation is ter-
r*J '

minated.
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4) If the tuple is of the type (Reduce,n), where grammar rule n has the

form -a 1 2 .. a then the Interpreter pops the k top locations of

the stack, which should contain the symbols a1. • .ak and pushes b. It

also may execute a semantic routine if any Is associated with this grammer

rule. These routines manipulate the data on the value stack to reflect the

semantics of the grammar rule.

At this point we note that we do not actually have to push or pop the

grammar symbols In the action stack, and that it suffices to keep track of

,- the top of the stack. Then at the time of a reduction, the grammar rule

and the top of the stack determine uniquely the location that each symbol

would occupy on the stack. With this, we can transmit information from

one semantic routine to another by pushing this information into the stack

in the place of the grammar symbol. For example, the semantic routine

associated with rule 36 uses the location of the FOR symbol on the stack

to store the starting address of the first statement in the FOR loop body.

Then, when the execution of the FOR body is terminated, the routine for

rule 35 retrieves this address from the stack to re-initiate the execution of

the FOR body if the final value of the index of the loop is not yet reached.

In order to reduce the storage required for holding the intermediate

tuples. the program in Appendix C reads and executes the tuples in four

stages: In the first and the second stage, the declaration and the input part

of tne program are processed. respectively. In the third stage. the system

ut equations is solved, and finally in the fourth stage the output is printed.

We briefly comment on each stage.

The declarations: The main objective of this stage is to construct the sym-

.ol table and to allocate storage for the declared sequences. The symbol

table 'sym_tabl(]" is an array of records with three fields. The first fieldarra

4-. . :
. . --:::S * . * .
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.

contains a character that indicates the type given to the identifier, namely

P. I or S for parameters. indices or sequences, respectively. The interpre-

*tation of the integers in the second and third fields, called entryl and

- - entry2. depends on the type of the identifier. For parameters, entryl con-

tains the value of the parameter and entry2 is immaterial. For index vari-

acles, entryl holds the value of the index, initialized to zero, and entry2 is

set during the execution of a FOR loop to the final value of the loop index.

Finally, if the identifier is declared as a sequence variable, then it may

denote a single sequence or an array of sequences. Single sequences are

distinguished by setting entry2=-1. with entryl pointing to the location where

m the sequence is stored. For arrays of sequences, entry2 holds a pointer to

a bound table that indicates the dimension and the bounds of each array,

and entryl points to the location where the first sequence in the array is

stored. The first three locations In the symbol table are reserved for the

identifiers d. o and u. respectively that are preset to the don't care, the

zero and the unity sequences. respectively. However, if any of these iden-

tifiers are declared in the program, then the corresponding entry in the

symbol table is overwritten by the semantics routine corresponding to the

new declaration.

The sequences are stored in a two dimensional array seq-store][].

Each row in the array has a length at least equal to MAXT and is used to

"tore tne elements of a sequence. Arrays of sequences are stored in con-

secutive rows such that any index changes slower than the one to its right.

if any. in order to keep track of don't care elements, an array d-tablefl]

of baits is used such that for each element in seq-store[ll., there is a

corre.oonding bit in d-tablefl](. This bit is set to one. if the element in

L zeqstoreU[] is a don't care. and to zero. otherwise. Thus, any part of the

"' 4 ' " " ;,o",' ,. ,'r'. . . . .. . . .. _p..*-......... .. .... . ....
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program that reads an element from seq.store[][] has to inspect also the

corresponding entry in d-table()().

fullThe implementation of the SCE solver listed in Appendix C allows for

full causality in the sense that an output may depend on any previous input.

Accordingly, storage is provided for the retention of at least MAXT elements

from any sequence. A more space-efficient implementation would be to

retain only the last C elements from each sequence in a circular buffer,

where C is given. This allows only for C-order causality In the sense that

the output of a certain cell at any given time t may only depend on the

inputs to that cell during the time period from t-C to t-1.

The input part: The INPUT statement specifies the sequences to be read

from the input file as well as the number MAXT of elements In each

sequence. The interpreter reads. as a stream, the MAXT elements of the

-  first specified sequence followed by those of the second sequence. etc..

- provided that the elements are separated by at least one space. No spe-

:.. cial characters are required to separate the elements of the different

sequences. Each element in the input file may be either a floating point

numoer or the letter "d" representing a don't care element. The interpreter

aiso recognizes the string - .  in the input file as an indication that the

remaining elements in that sequence are don't cares.

The equation solver: The sequence of tuples in the body of the program

are executed iteratively MAXT times. A global clock "TIME* is initialized to

1 and incremented at every step of the iteration. At every step, the

expression on the right side of each equation is evaluated at time TIME and

S.'- assigned to the corresponding element of the sequence on the left side of

tne equation.

The value stack is used during the evaluation of sequence expressions

|o t
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to store temporary results. For example, the semantic routine associated

Swith the grammar rule 52 (seq_factor - seq-spec) reads the value of the

• .element TIME in the specified sequence from seq-store[I[. and pushes it

" "-. onto the value stack. The result of any subsequent sequence operation is

stored on the stack until rule 37 is executed and the final result is stored

back into seq.store[)[l.

The sequence operators 0. Z. T and E operate on sequence factors

and have the effect of changing the global clock during the evaluation of

the corresponding factor. The old clock value is stored in the action stack

for retrieval after the evaluation of the factor is complete (rule 53). If the

result of any operation involving the above operators is the don't care ele-

ment, then the flag "skip- is set which causes the execution of the seman-

tic routines to be skipped until the corresponding tuple (Reduce.53) is

encountered. Of course provisions are made to deal with arbitrary degrees

of nesting.

In a similar way. the flag "Mskip" is used to chose the appropriate

operand in the multiplexer operator. Finally, we note that by restricting the

operands of the accumulator operator to sequences instead of sequence

factors, we simplified greatly the action associated with that operator. For

a detailed description of the different semantics routines, we refer to the

complete listing of the program in Appendix C.

it is important to note that the SCE interpreter detects any incon-

• "- sistency in the given equations or any attempt of solving equations which

are not causal or weakly causal. It does so by associating with each

sequence an entry in the array last-computed[] to keep track of the last

element that has been computed in the sequence so far. Any attempt to

.* overwrite an already calculated element or to read an element that has not

•_._ . * . . ***.*%",-..-~.-.
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.. , yet been calculated is then easily detected and reported as a run time

error. The interpreter also detects other types of run-time errors that arenE
listed in the function runerror in the Appendix.

The output part: After completing the Interpretation of the body of the pro-

gram, the sequences specified by the user are printed on the standard out-

put file.

The SCE simulator/solver was used to simulate the operation of the

systolic networks that have been verified analytically in Chapters 3 and 7.

In the next section, we will illustrate its application by applying it to the

simulation of an LU factorization network that will be used in Chapter 9.

Although this approach to the simulation of systolic networks Is very simple.

it should be clear that it can be used only to verify instances of computa-

tions; that is. all architectural parameters and input data have to be given

specific values during the simulation. Of course. this observation applies to

any simulator or numeric solver, and the only way to allow for a more

general simulator would be to consider symbolic manipulation which pro-

duces a symbolic description of the outputs in terms of the inputs.

Finally. we note that a possible optimization of the implementation of

the interpreter could be achieved by replacing the single value stack by k

stacks. for some optimal k. This would reduce the total number of itera-

tions through the body of the program by considering at each step the ele-

ments TIME. TIME+I, .-. TIME~k of the sequences instead of only one
element at a time. However, if the system contains any recursion, then

-; only few of these k elements (and in many cases only one) can be con-

s erea at each step, and this requires more complicated book keeping to

-o.': upaate the array last-computed[] and the global clock. We decided not to

. i mplement this optimization because we Intended the solver to be used in

.

C-*.•

C...'
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cases where analytical solutions of the system of equations are difficult, and

hence where recursivlty is usually present.

4.3. Example: An LU factorization network.

In this section the SCE interpreter is applied to the simulation of the

Tcomputations of a network for the LU or the U DU factorizatlon of a sym-

metric banded matrix A and the solution of the linear system of equations

Ax=y with a given vector y. It will be shown also that. with slight modifica-

tions, the same network can be used to compute the Cholesky decomposi-

tlon LLT of the matrix A.

The first systolic network for factoring a banded matrix into the product

of a lower triangular matrix and an upper triangular matrix was suggested

by Kung and Leiserson [311. Later, Brent and Luk (71 modified the Kung

and Leiserson network to compute the Cholesky decomposition of symmetric

e matrices. The network described in this section is also designed for sym-

.- "metric matrices but is different in its operation principle from the one given

in [7]. Both networks use almost the same number of computational cells

and achieve approximately the same speed-up over serial execution. They

aiffer however in the type of computational cells and in their interconnec-

tions.

Consider the system of linear equations

A x = y (4.1)

where A is an n xn matrix and x and y are n dimensional vectors. The

soititon x of (4.1) may be obtained by finding a lower triangular matrix L

and an upper triangular matrix U such that A = L U. and by solving the

t two triangular systems L z = y and U x = z. More specifically, assuming

S.tn at A is symmetric and banded with band width 2k+1. and denoting the

,..* .,-.

"':"''. . """- - _*- ".-_- .* "_ "'_, ,""=;-=,', " --: =-" ""- -"" "** ' ""." , *-" .:" .:'; . ." "'.



72

elements of the matrices A. L and U by aji I and u,.,. respectively, we

may use the following algorithm to compute the LU decomposition of A.

Note that only the elements a1.j with 1)1 are used and that only the non

zero elements of L and U are computed.

- ALG2 W factorization.

FOR 1=1. .n DO

-. ~1) FOR j~....min(n. l+k) DO

1. 2) u = i

2) FOR q=il1 .. min(n. i+k) DO

FOR I=q. .min(n. i+k) DO

a . a -j q~j qJ i1.1

At this point we note that the matrix L obtained by the above algorithm

satisfies L=U T0 . where D is the diagonal matrix defined by d.........,Also.

*by replacing steps 1.1 and 1.2 in ALG2 by

I. , a.

T
we obtain an algorithm for the Cholesky decomposition LL of A.

After having performed the LU decomposition of A. we may compute the

-. vector z=L- y by the following algorithm

ALG3 Back substtution.

FOR i=1, .n DO

FOR q1i.l .. min(n. i+k) DO

q q qJ I
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Finally. the solution of Ux=z may be obtained by an algorithm similar

to ALG3, or alternatively by using ALG3 itself for the solution of U" = z'

where n- tl n-, 1 and U is a banded lower triangular matrix

with the elements u.u, -t ln -j +

As an example, let n=5 k=2 and

2 4 6 0 0 4
4 11 15 -3 0 14

A 6 15 20 2 -2 and y= 15 (4.2)
0 -3 2-19 1 0
0 0 -2 1 14, -6

By ALG2 we obtain

2 0 0 0 0 ri 2 03
4 3 0 0 0 0 1 - 1 0

- L 6 3 -1 0 0 and U = 0 1 -5 2(4.3)
0 -3 5 3 0 0 0 1 -3
0 0 -2 -9 -9 0 0 0 1J

and by ALG3

2 -41
2 -19

z 3 and x = 27 (4.4)
-3 6
.3.3

The graph of the systolic network that executes ALG2 and ALG3 simul-
im. l(k t 1) (k t4)
taneously is shown in Figure 4.1. It is composed of ) interior2

nodes. Each node is labeled by a pair (ij), where i and j are the coordi-

nates of the node with respect to the two axes shown in the figure. The

color of each edge is determined by its direction. More specifically. edges

directed to the east, south and south west are given the colors s. b and c.

respectively, and those directed north are assigned the colors r or p

"*' depending on their relative position.

The part of the graph that is formed by nodes (i.j), i1. .k t1.

*," _1, -/ =1' • k -i t2 represents a subnetwork that executes ALG2. It consists of

inree types of nodes whose operation is described by the following equa-

tions;

. . ."

* * * .'... .* .. -- . . .. .. '
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X so, a S

Figure 4.1 -The graph for the LU network

For node (k+1.1)

0o (4.5)
k .1 0 "r/ 'Pktl.1 - ktl.1J

where r is the unity sequence defined by r(t)=1.O for any t.

For nodes (0.). 1=1. k l

P1. 0 (Pi'i - ,,, (4 6.8a)

~'i. fl ~~i ~il - IA] fl0 0~ , 2 (4.6. b)

0,1 0 0. (4.6.c)

For nodes (1.1). 1=2... .k+1. 1 . *. - k+2-1

= (4. 7.a)

07.i IT (4.7-b)

=ijt n 0 P1. (4.7.0)

On the other hand, the part of the graph composed of the nodes (0.I).

=1, -- ,k tl corresponds to a subnetwork that executes ALG3. The opera-

tions of the cells in this subnetwork are described by
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For node (0.1)

o. 2 = no [0 O.1 - 'o. 11 (4.8.a)

8 = 0 no 00,1 01 - 180,11 = no G0 ,1  O.2 (4.8.b)

For nodes O.P. j2, ... ,k+1

Po., 1. = fPj po, (4.9.a)

180-O, = no 30 [O. /  0., P0 ,/] (4.9.b)

Note that the nodes (M1), i=O, -. k correspond to subtract/multiply

cells, while the nodes (ij), j=2,.. .ktl, i=1,.. .kt2-i, are multiply/add

cells. Only the node (k+1,1) Is a subtract/divide cell. In other words, the

network Is composed of three basic types of simple computational cells.

For the proper operation of the network, the input sequences -Y 1X

-=. = -".ktl and 0Okt1 are set to the zero sequence L, and the input

links sk+2i....l,. ktl, are connected to the links Pk 2-j,j (see fig-

ure), that is

1 ,i = . j= ,... ,ktl (4.10.a)
".0 t '- W .(410. b)

0 k 2-j. = fkt2-i j  j=2, -. =,k l (4.10.c)

P The elements of the matrix A and the vector y are fed into the network

" through the links r 1  i=1.. • .ok+l and ro 1  respectively. The precise

input specification is given by

ktl-i 2Pi, 1  = n e ai i=1o' *•,ktl (4.11.a)
ktl 2P0 . 1 = n 0 97 (4.11.b)

where T(aI.)=n-(kt1-i), T(77)=n and

a (t) =

In other words. ak*l-q contains the n-q elements of the qth off diagonal

of A, and 77 the n elements of the right hand side vector y.

. . . .. , ..

- - - - - -
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In order to understand the principle of operation of the network, we

first note that at iteration step i of algorithm ALG2, the ith row of U and

the ith column of L are computed from the ith row of A (steps 1.1 and

1.2). However. the elements of the matrix A are continuously modified. In

particular, at the execution of step i, the elements In row i of A had been

modified by subtracting from them different contributions (step 2) during the

steps i-k,- ,,i-1. In the systolic network of Figure 4.1. the elements of

th
" the unmodified i row of A arrive at the cells (q.1), q=l. .-.,ktl. on the

r colored links. At the same time, the sum of the contributions from the

previous iterations i-k..-- .i-1 arrive at the same cells on the c colored

links. The subtraction is then performed and the elements of the

corresponding column and row of L and U are computed and sent out on

the r and p colored links, respectively. These elements propagate upward

in the network allowing the cells (q,j). j=2, •.ktl, q=1. .kt2-/ to

compute and sum the contributions for the modification of the subsequent

rows of A. These contributions are sent downward on the c colored links.

The subnetwork formed by the cells (O.j), i=l,' '',k+l operates in a similar

way.

Ile% ,A closer study of the behavior of the network shows that the significant

eiements of the matrix U are sampled from the links p., q=1,"- k, and

the elements of the partial solution vector z from the link b These0.0'

results are sufficient for the computation of the solution x=U z. However.

T
the elements of the diagonal matrix D. where L=U D. are also available on

l the link s .k More precisely, the output sequences are expected to have

the following description;

k t2-q 2
7q . q 1, .k (4.12.a)

-". +k 2 2
It O "0.0 n (4.1]2. b)

0 (4.120

:-." .5k

,-:.:.5',. i -s ,-.- ..'- ,- - "_ + + ,: . . . . . . . + . . .+ -. . . . -. . . .. . - . .. . . . ... . -. .. - :
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-.. where T(s )=n-(ktl-q). T(C)=T(X)=n and
* q

L q(t) = ut.ttkl q

X (t)= dtt
'pC C(Y) =z.

After the computation of U and z terminates, we may use the network

-': ".. for a second time to solve Ux-- and obtain the vector x. Of course only

S-.few cells will be doing useful work during this second run. At this point

- we note that we can add to the network any number of columns of cells

identical to the column (Oj). i=1, --. k l. This enables us to use the

network to solve (4.1) for more than one right hand side vector y simul-

- taneously.

Finally, we note that the network described in this section can be

modified to perform the Cholesky decomposition LLT instead of the U TDU

decomposition. For this, the equation (4.5) for the operation of node

(k+1.1) has to be replaced by

Ok.1 = nO [Pk+1,1 1

and the data on the links p i= .,-.. k have to be set equal to the data

on h7 2 . i= .-.. .k. This has the effect of modifying (4.7.d) to

-" "Y~itlij-1 0 fl 'tI Ti j ij

It is clear that in this case, the links r i..=2.... k. i=1.... .kt2-i carry
'pj

redundant information and hence can be removed from the network.

if:- After this description of the network. we turn our attention to the task

S-of simulating its operation. First of all. we write an SCE program that

" describes the network and contains the equations that model its nodes. In

• •- the following program, the parameter k which determines the size of the

network is set to 2.

* 
%t

• ~~~~~~~~~~~~~~~~~~~~~~~. . . . ........-.. •.....-....•..,-... ... ...... .. ,....-...-.....-..',".-, _,,..
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The SCE program for the network of figure 4.1

PAR k=2;
INDEX i.j
SEQN s(0:k,1:k+1)

r(0:k+1,1:k+2)
p(l:k,l:k+2)
c(1:k+1.1:k+1)
b(0:0.0:0k+ 1)

INPUT( MAXT 18, For i=0.k+l r(i,1) /3 input statement 3/

FOR j=1.k+1 DO c{1,j) = o END ; /3 equation (4.10.a) I/
b(0.k+1) = o ; /* equation (4.10.b) 2/

s(k, 1) = Z [ u / [r(k+1,1) - c(k+1,1)] I / equation (4.5) I/

FOR i=l,k DO
r(i.2) = Z [ r(i.1) - c~i,1) i • /3 equation (4.6.a) I/

2 p )i2 = Z sli.1}) rxi,2) /* equation (4.6.b) f/
" s(i-1,1)= Z si.1} / equation (4.6.c) It/

END '

FOR j=2,k+l DO
FOR i=l,k+2-J DO

s(i-l.j) = Z s(i.j • /P equation (4.7.a) 3/
p(i.j+1) = Z p(ij) • /P equation (4.7.b) 3/

r(i.I+II = Z r(i.I • /* equation (4.7.c) "J
c(i+1.j-1) = Z [ ci.j) r(i.j) s(i.j) ] /I equation (4.7.d) 3/

-,.,.END Ds( = pfk+2-j,j /2 equation (4.10.c) 1 /

END;

r(0,2) = Z [ r(0.1) - W(0.11 ] • / equation (4.8.a) 3/
D (0,(0) = r(0,2) x Z s(0.1) • /P equation (4.8.1) b /

FOR j=2,k+l 00
r(0,j+l) Z r(0.j) ; /1 equation (4.9.a) 3/

b(O0j-1) Z(2) [ b(O,j) + s(0,j) r(0,j} 1 / equation (4.9.b) 3/

END

OUT( b(0.0) . FOR i=1,k pfi,2) , s(k,1) ) ; /1 output statement 3/

Next, we will use the above program to simulate the computation of the

matrices L. U and the vector z for the matrix A given In (4.2). In order to

specify the input for this computation, we note that The INPUT statement in

the above program limits the length of the sequences to 18 elements. It

also determines the order in which the input sequences are read from the

input file, namely PO1 , p1.1" p,1 and then P31 Accordingly. we follow
'P3,
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- the pattern specified by (4.11.a/b). and use the data from (4.1). to construct

the following input file

Input file:

0.0 0.0 0.0 4.0 1 d 14.0 d d 15.0 d d 0.0 d d -6.0
d d 6.0 d d -3.0 d d -2.0 d d ...
d 4.0 d d 15.0 d d 2.0 d d 1.0 ...

2.0 d d 11.0 d d 20.0 d d -19.0 d d 14.0 ...

Finally. we use the SCE interpreter to run the above program with the

given input. This produces the following output file

R-"* OUTPUT SEQUENCES **xx

0.00 0.00 0.00 0.00 2.00 d d 2.00 d d 3.00 d d -3.00
d d 3.00 d

0.00 d d 3.00 d d -1.00 d d 2.00 d d d d
d d d d

0.00 d 2.00 d d 1.00 d d -5.00 d d -3.00 d d
d d d d

0.00 0.50 d d 0.33 d d -1.00 d d 0.33 d d -0.11
I d d d d

where as specified by the OUT statement, the sequences are printed in the

order 0.0 ,  if1,2. 72.2 and then Ok,1.  It is easy to verify that this output

agrees with the results in (4.3) and (4.4). and the formulas (4.12.a/b/c).

Finally. we note that the potential application of the SCE language

presented in this chapter Is not limited to the solver/simulator. For exam-

/l pie. the SCE language may be used for the precise specification of any

systolic network that can be described in terms of the abstract model. In

fact, for a given network, one may write an SCE program in which the
.- causal equations and the sequence declarations describe completely the

graph of tie network as well as the operation of each of its cells. This
SCE specification may be used. for instance, as an input to an automatic

LJay-out program or to a translator that generates specifications in some

:inguaqe used in the computer aided design of VLSI devices.

°°.
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The syntax directed approach used in the implementation of the

solver/simulator led to a very modular program. This simplifies the task of

moditying the solver to incorporate new SCE grammar rules that need to be

added when new types of sequence operators are introduced. Actually, the

aaaition of a new sequence operator to the grammar requires only the

implementation of a corresponding semantics routine that describes the

effect of the operator.

"-.9"

9...

0,

''5

.. ... ... - .. ,.t.. . . .. , . . .. .•.-f.*. . .. .. , .. .... .. ...... . . *. f.. ..,t ....t," ?.2:: ¢ .,.;'4 -"} ". °•:.,- -. , ..", .- '.•.o -. - .".:-. " .- - •", -:".,,- f, t-,, ft,- ft f . , t , '



' 5- ON THE FLEXIBIUTY AND POWER OF THE ABSTRACT MODEL

" After having presented the basic features and Immediate applications of

the abstract model, we explore in this chapter some issues that demonstrate

'--: , ithe flexibility and the power of this model. In particular, we discuss two

.,.,..,:, restrictions that were imposed on the model. namely the absence of internal

.:, states (memories) associated with the nodes of the graph, and the require-

ment that the graph does not contain direct loops. In Sections 5.1 and

• 5.3. we show that, despite these restrictions. it is nevertheless possible to

. apply the model to computational cells with internal memory and to networks

;...,.with direct feed back connections.

,'. :,',The application of the model to the issue of the uniform treatment of

"-': data and control signals is discussed in Section 5.2. in Section 5.4. we
~suggest a technique that simplifies, to a great extent, the verification of

.

tpipeline computations in systolic networks. Finally, we show in Section 5.5

t thabe abstract model may be applied to self-timed systolic networks. For

this. we modify the interpretation given in Section 2.3 to allow for the model

to e appcable to any systolic network, irrespective of the method used for

te synchronzation of its operation.

pple5.1. Modeling computational cells with internal memory.

SThe astract model, as defined in Section 2.2. does not explicitly allow

the nodes to have internal states or memory. In facto the specification

given in Secton 2.6 for the 1-d convolution network with

mne abstract model, since in equation (2.8). we assumed that each cell in

t..-f

too ppial°t n ysoi etok irsetieo hemto.ue o

• ,,. .. .,' , t.'. " .,...2.'me,>, synchronization.". .-'. o-". of. ,"o '." it."s "--." "- ,operation., -., ..-." ,
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However, we note that the definition of causal operators allows any out-

put to depend on any previous input, thus eliminating the need for explicitly

associating memory with interior nodes. In order to illustrate this Idea. we

consider the cell shown in Figure 5.1(a) and assume that the equation

describing the output on the link s i 1 is

o 1 = l [a + lE/. pi] T 'i]  (5.1)
-1

The factor p in (5.1) Indicates that the output ail(t), at any time t,

skt1Q(tLst1)k, for some a>O. will depend on the data Item that was exist-

Ing on the input link rI at the time t=sktl. Clearly, any physical realiza-

tion of this cell needs to contain a memory (see for e.g. Figure 5.1(b)).

t4 • .. C
P,*

$- S

(a) (b)

Figure 5.1 - A multiply/add cell with internal memory

•. ,

4. ArCl

Figure 5.2 - A 1-D convolution network with writable in-cell memory

With this we can now give a consistent specification of the 1-D convo-

lution network. We add to tme network of Figure 2.7 the new links r.,

=0..-.. k that will be used to input the values of the convolution constants

* * * * . * .% ' * * .... "
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_..* .- W... w into the cells. The graph of the modified network is shown in
-- V "

-% Figure 5.2 and its operation is specified by the causal equations:

; V Vr_ r i=1, - -. ,k (5.2.a)

p., n = p= 1. -. - ,k (5.2.b)

-4 el+1 = n10 i + iE k ij-1 P i i  i=. .k (5.2.c)

With this specification. the network I/0 description may be obtained in

the form

Sk ]  1  a[+ k n 2j-1[,2n_ Pk I k ) (5.3)0kt1 E 2k -2 +1~ji [ 2

The constants w I, • ,wk are supplied to the network through the input

link rA, The idea is to let these constants flow on the r colored links and

let each cell i capture its corresponding constant as it arrives at its own

input link r.. The cell then remenbers its constant for the duration of the

" computation, namely for 2n time units. Formally, the inputs to the network

are described by

k-1
01  n- e L

= e w
pk

where L is the zero sequence. T(4)=n, T(w)=k and f(t)=xtV w(t)=w Using

this input in (5.3) and applying Properties Pl0 and P4 in Appendix A we

S"obtain

,' 2k-1 k k i1i .i:_ n.-O e L + h n . ni- [E Ai 1 41

k " /=1k-

This leads to the same formula as in Chapter 3. namely equation (3.2).

- However, we note that the convolution constants, in the modified net-

work, are supplied as an input rather than being associated with the cells.

This allows for the possible pipelining of different computations, with different

'

• ~~~~. .. .. .. . . . .. . . . , % .-.. ' - "...... , .. - . '.-, ",-.,- .. - .. ' -

I* ' .-- ' ' .. " " " "' '" " " " 
° "

* " " . . . ... " . . . . . ,- - .,. ,__,, .. ... . . ,..t_. .t:., .
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convolution constants, on the same network. We will discuss pipellned

operations in some detail in Section 5.4.

Finally, we note that although the k cells in the above network are
,. %.4-

identical, the operation of each cell i Is determined by a local control

. parameter that determines the instants at which the memory within the cell

is overwritten. In the next section, we discuss possible methods for con-

trolling the operation of computational cells that depend in their operation

on local parameters. Z'

5.2. Controlling the operation of systolic cells.

As mentioned in Section 2.4, the operators Ark '. Mw .wn and E
" r r

can be used to model systolic cells that contain accumulators, multiplexers

or periodic memories. Here the indices r, k, s and w .-.. ,wn control

different timings that may affect the operation of the cell, as for instance.

4-.-
the reset times. the Idle times and the active times of the cell. One way

of monitoring these different timings in physical cells is by providing each

cell with a separate circuit that generates reset and idle signals at the

specified times. This circuit may be designed either for a specific value of

the control parameter, or for flexible assignments of the values of these

parameters according to a desired application.

On the other hand, timings may be monitored by signals external to the

- ceil. This external control method treats data and control signals in a uni-

form manner [27], and is especially preferred in systolic networks if the

timing ,ignals can De propagated systolically within the network.

As an example. we consider again the modified 1-0 convolution network

..- discussed in the last section. Equation (5.2.c) specified that the memory

wtnin any cell i. 141 k, is overwritten at times kti-lt2sn. s=0.1,.  . In

order to apply the external control method, we add to each cell i in the

',,',. ,#. ..." . 4. ...,..-.,. % .. ". .. . .. .. ." '=. ...o'. .. ' 'o " •. ' .. '- " .... • ° .•.'. " .' °o . . . . . . ..". . .. . . .,

* 1 . .- , , - , . . . . . - . . . . . . . . ..- , . - . . . . . . - . . . .
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network an input link c. such that at any time t. the memory is overwritten

3 only if the data item on c1 equals 'Y1(t)=1. If 7,(t)=O, then the content of

the memory is not changed.

In this example, the control parameter k+i-l+2sn, .=.,... , is linear

with I. Hence, we may control the operation of all the cells by means of

a single control signal that is propagated in the network. In Figure 5.3. we

* -augment the network of Figure 5.2 by the c colored links and add to its

specification the causal equations

nt~ - 1=1,-- ,

it
C.,. Cl,_ c,,"C.CaC

4 ~ ~ /'r 0 t fr _ Ij_ .

PI r K .1 -A ,9

Figure 5.3 - A 1-D convolution network controlled by external signals.

If the signal transmitted on the Input link c 1 is specified by

= k p2n (ea)

where o(1)=1 and a(t)=O for 1<tT(a)=n, then it is easily shown that the

control signal on the input link c. of any cell I is described by

Sif t<k ti-i
7• " i(t) =[ 1 If t =kti -lI+2sn, s =0. 1..

• (.) 0 otherwise

This shows that the control signal will arrive at each cell at the appropriate

time.

The external control approach is equivalent with a redefinition of our

operators under which the control indices r.k and s are replaced by an

"V

.............................

°o. o "o =- -"- .,.- ., - -o - .. .°° ,, . ' 'o... . . .. . . . . . . . . . . . . . .".. . . . . . . . . . . . . . . ., . ..-. . . . . . . ..' .o ,. , .o •, ', " =
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additional control argument. For example, the expression "Er J- used In
r

a,. modeling a periodic memory cell may be replaced by E(QY), where the

*: .-. nonperiodic expansion operator E is defined by

[E(E.)J t = [EQ.•y)J(t-1) if Y(t)=0
• ." ". [E( • )]() O

* * *(t) if Y(t)=1

and the sequence Y controls the resetting of the memory element; that is

"1 t=r r tk. rt2k, -.

0 otherwise

Evidently, the properties of the operator E may be derived directly from

those of Ek. Similar operators may be defined for nonperlodic accumulators
r

and multiplexers.

5.3. Modeling networks with direct feed back loops.

The condition described by equations (2.3) in Section 2.2 does not

allow for direct loops in the graph of systolic networks. In practice. how-

ever, systolic networks that have two phase clocks (for stability considera-

tions) may contain computational cells with direct feed-back connections. In

this section. we show that we may still apply our model to describe the
operation of these cells. The iteration operator of Section 2.4 will be use

for this purpose.

Consider. for example. the cell shown in Figure 5.4. If we were -

allowed to use direct feed back in the network's graphs, we could model

the operation of this cell by the equations

a = A1 (0iai) (5.4.a)

00 = A2 (i'a ) (5.4.b)

with the condition that ai=a. and that A1 and A2 are given causal opera-

tor.

.4% V:% 26
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Note that the link a cannot be an external Input to the cell, and that

the link a0 cannot be an external output to the cell. Hence, in order to

model the operation of the cell, It suffices to relate the output 00 to the

input 6 . This relation Is obtained by substituting a0 = a, in (5.4.a) and

using Theorem 3.2 to solve the resulting equation. This gives

00  = A2(a i  1 A1 ( e,71))

S. This completely describes the I/0 behavior of the cell.

P L

Figure 5.4 - A cell Figure 5.5 - The internal
With direct feed-back structure of a periodic accumulator.

As a specific example. we consider the cell whose internal structure is

shown in Figure 5.5 and whose operation is described by

SI.k-i
7 = M I  U. a) (5. .a)

= N0 (f t 71 (5.5.b)

where L is the zero sequence. If the output link z is directly connected to

the input link s, then the output sequence C may be described as a func-

, tion of the input sequence f only. We obtain this description by first sub-

stituting o =4 in (5.5.a) and using the result in (5.',.b).
1 ,k-1

l0 (k + M 1 ' ( U 4)] (5.6)

0 1'



88

-- We may then apply Theorem 3.2 to express the solution of (5.6) in the

form

1,k-1n It O  t ( L 77)1 (5.7)

This is an explicit I/0 description of the cell. It is easy to show that the

formula (5.7) is equivalent with
Lk 1

C =fl0 Alk 1 (A); (5.8)

that is the cell of Figure 5.5 acts as a periodic accumulator. A similar

result was proved by Johnsson and Cohen 1271 using the delay operator

9 defined in [11). In order to prove the equivalence of (5.7) and (5.8), we ..h
consider the t element of C. By (5.7) we have

1k-1(t) = U Io  [ t M '- U , 7)]I(t)..
In 0 [t t M ' U , C)J](t)

which by the definition of the multiplexer operator gives

0 t=1

C(t) = (t-1) t=2.k 2.2kt2.,. (5.9)

S(t-1) t c(t-1) otherwise

Equation (5.9) is a recursive formula that may be rewritten in the form

0 ~t=1 ,

C(t) = (5.10)na -1L (t r* ) t C (t rti) t>"
r ri =0

where t r=(t-1)-mod((t-2)+k) and na=t-tr. Finally, from the definition of the

accumulator operator (see Section 2.4). it follows that the elements of tne

sequence C in (5.8) are also give by (5.10). which proves that (5.7) and

(5.8) are equivalent.

IOUi

S.%.

4-:
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5.4. Verification of Pipelined Operation.

In this section, we apply the abstract model to the verification of pipe-

, lined operations in systolic networks. More specifically, given a systolic net-

- rwork that has been shown to perform a certain computation successfully, we

4 Iwant to study the Issue of repeating the same computation on different data

in a pipelined fashion. Assume that a certain systolic network NET has the
* 44

I/O description

7i= r,(f1' i=1...,p (5.11)

where 4 J=1, *- .n, 71. /=I,... ,p, are the input and output sequences of

the network, respectively, and r1. i=I.' . .p denote certain causal operators

that model the behavior of the network. Suppose also that for a certain

input description

, "i= ar =1,-" .,n (5.12)

with given integers r/ and sequences a.. we were able to show that the

*,. -. outputs are described by

j7i n I if=1, • " "' ,p (5.13)

with specified integers si and sequences . In other words, suppose that

when (5.12) is used in the equations (5.11). then we were able to prove

that

4- /i = i(flr l  a1 . . ) a.n ) i=1,....p (5.14)

: -- The calculation of the elements of 0,. i=Z.... .p. from those of a.

.=1,.. -n using the network NET shall be called the computation C. The

time of this computation is defined as the time required by NET to com-

plete C from the moment when the first non-6 input entered NET to the

. moment when the last non-5 output was produced. More precisely.

E, zz

.4,::,.,.:--,.....;,, .~ - -:. , .- -: :.:" -." - -..-..-. . -- ., . .. . .•. . -. .. .- . . .
, :" " ,--. """" ' Z

M

, ," , ' ", * " "-" "- " 2 " " "" '-'" " "', """.. 4 ."'""" *" """ * " ""'I""'-
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Time(C) = max( T(nSI B); 14/ip) - min( ri; lj/n) (5.15)

where, as usual, T is the termination function defined in Section 2.1.

.- Often, it is desirable to repeat the computation C, say m times, with

different data sets Ae=(cal;I=1. .n), e=1,. - -. m. Let us denote these m

instances of C by C e. e=1,.. . ,m. In many networks, this may be accom-

I mplished by pipelning C -.. , C m
. The time difference between the initia-

tions of two successive Instances C and Ce tl will be defined as the pipe

separation r of the computation C. In this case, the Inputs for the dif-

ferent instances of C should be pipellned on the Input links. That is

equation (5.12) for the input sequences should be replaced by

pT a) =1 ... .n (5.16)
" e8=1 ,m "A

where we used the asterix in to Indicate that the sequences represente%

the input data during the pipeline-operation. We will also use te to

represent the Inputs (5.12) for a specific instance Ce of the computation.

This 2 and e superscript notations will be employed from now on for

sequences on any communication link.

If the computation can be successfully pipelined on NET with a separa-

tion 'r then by using the inputs (5.16) in the network I/0 description (5.11).

we should be able to prove that the output sequences during the pipeline-

operation are described by

S/ T e
7 = rlu PT (8 e) =1.- • •.p (5.17)e=1.m i

in order to ensure a successful pipeline-operation, the Dlpe separation

r must be large enough so that the Inputs of the different instances Ce do

not overlap and the corresponding outputs do not overwrite each other.

The first condition implies that r>T(a,). e =1... .n. and the second that
I=-1

"-( )e =1.. .p. -In other words, the minimum pipe separation Tm(C)

,.
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for the computation C Is equal to the maximum span of all the input and

output sequences In C. where the span of a sequence is defined as the

time difference between the first and the last significant elements (non-0 or

non zero elements) in the sequence plus 1. that is the time during which

the sequence carries information relevant to the computation. Hence. a

• :network that can be used to pipeline a computation C with a pipe separa-

tion Tm(C) achieves maximum efficiency. from the viewpoint of the pipelined

operation.

*-. In order to derive (5.17) from (5.16) and (5.11) without repeating the

effort spent in proving (5.14), we use the negative shift operator and the

equation (5.12) to rewrite the pipelined Input (5.16) as

dfli T ( , 0 1) 1•..- .n (5.18)
fi ." e=1.m

* 9
Here 4 are the Inputs that would be used If the instance C of C had

been performed on NET without any pipellning. Next. we substitute (5.18)

into the network I/O description (5.11) and obtain for i=1,...,p

"" = -,[ rn -e
71 p=r (,[-rn1 1]... (,-rn 8 )]) (5.19)

Ii elm 1 e=1Im n

- The remainder of the proof is based on the use of the different pro-

--perties In Appendix A for factoring the shift and the piping operators out of

the causal operator r. If the computation can be successfully pipelined

- through NET. then we should be able to transform (5.19) into the form

Si T -S/ 0
:: " P = ' em - r,(4. .Q I ) ) =1.* . (5.20)

which by (5.11) and (5.13) directly reduces to (5.17).

It should be noted, however, that there exist computations for which

there Is no 7-value for which (5.20) is derivable from (5.19). This means

that such computations cannot be pipelined. On the other hand. we can

identify a class of computations for which pipelining Is always possible. The

~.-.......... .. ,<.....,.........,....... ,...............-,.., .. .. .,.,.- ......... ,
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term 'Inert" shall be used to Identify computations in this class. More

specifically, a computation C on a systolic network NET is called inert if

1) At its initiation. C does not care about the data on the non Input

communication links of NET, that is we may assume that at time t= 1.

the data In any non input sequence are 8's. This implies that any

delay in NET should be modeled using the shift operator and not the

zero shift operator.

2) Only 0-regular operators are used for modeling the cells in NET.

This implies that the network does not treat 0 as a special symbol.

It is always possible to pipeline an inert computation C through the

corresponding network NET. In fact we may simply chose the pipe separa-

tion T to be the time of the computation defined by (5.15). With this value

of -. C does not start before C is terminated. Of course, we are not

interested in such large values of -. and hence. the problem arises of

finding the least value of 7 for which (5.20) is derivable from (5.19).

As should be clear from the above discussion, the ability to derive

(5.20) from (5.19) is the major Issue in verifying the pipeline operation of

any systolic network, and this ability depends principally on the value of T.

However, for any inert computation C. we know that there exist a value for

which (5.20) is derivable from (5.19). In order to find the least possible T.

we start with T = Tm(C) and proceed to factor out the shift and piping

operators from (5.19) until we either reach (5.20), which is our goal. or we

cannot continue the factorization because of a small value of -r. In the

latter case. we Increase T appropriately and repeat the derivation procedure.

EXAMPLE:

As an example. we consider once more. the modified 1-D convolution

network of Section 5.1. recall that the network I/O description was given by
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a k+1 +  l "  2 -2i+1 P/d V k (5.21)

and that, when the inputs for a certain instant of le computation C are

specified by

• fk -1 •01 = eL (5.22.a)

71 - =ee (5.22.b)
" k = e (5.22.c)

then the output is described by
. '- e = .2k-] ti

-ok + e 71 (5.23)

The detailed forms of the sequences te .e and w containing the input

W "data for Ce and the sequence 71 containing the result of C were speci-

fied earlier.

It Is easy to see that this convolution computation is Inert. Hence. it is

i t always possible to pipeline different instances of the computation on the

same network. In this case. the minimum pipe separation during the pipe-

lined operation is 'm = max(2n, 2k, 2n-2(k-1)) = 2n. If m instances are

pipelined through the network with the minimum separation, then the inputs

should have the forms

" nk-1 p2n (e e) - k-1 2n -(k-1) e1)0 1 e=1,mL - =I'm 1 (5.24.a)

7* = p2n (940) = p2n (5.24-b)
k e=1.m e=1.m k

,..' :'" * = 2n (ete) = 2n e,.e=.m e=1.mn ) (5.24.c)

Using the pipelined input (5.24) in the network I/O description (5.21). we

obtain the output of the pipelined operation, namely

= f 2 k-1 p2n (N-(k-1) e . 2i-
k+. , e=1 m  (n a I E- .

[[ k~ 2n J 1 e j . 2n a )
[[ -2i 1 Pe=,.M (P k e=l'm(i
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Next. we use the Properties P16 and P1.1 In Appendix A to rewrite this as

Ar 2k-1 2n -(k-1) e r) 2J-11
o 1e=1.m (n 01)+

p2n .e 2
' e=1Lm 2k-2jt1I (Pk 5.5

., Using the fact that T(, k-2/17 P k ) 2n, and applying Property

P8.3. we may reduce (5.25) to

%k

MO: O =2k-1 2n -(2k-1) kk 21-1 2n  ( ]
171 P (r If)~~ k0e t n2i (E~k 2 t

Finally, from (5.21) and (5.23) we obtain

= 2k-1 p2n ,-(2k -1) •
kP1 : 2k :mO tI*1 

.m

:" '"2k -I -P2" e.n 0 e=1,m (e 1

This proves that the output of the m instances will appear on the output

link ak t1 at a rate equal to the input data rate, namely the output of one

instance every 2n time units.

Note that the technique suggested In this section separates the verifica-

tion of the pipelined operation from the verification of the correct execution

of one instance of the computation. This separation leads to a clearer

logic and simpler proofs.

5.5. Self timed systolic networks.

So far, we have applied the abstract model to clocked systolic net-

works, that is, systolic networks that are synchronized by a global clock. In

this section, we show that, with a slight modification, the model may be

O applied to self timed systems as well [50]. In order to explain the differ-

ence between the two types of systems, we first generalize the definition of

systolic networks to include any network in which computational cells have a

, basic cycle that is repeated indefinitely, unless the cell is forced to halt

externally. After the initiation of a cycle in a computational cell, the cell

..-:..~, . . . . .. . -- - '. - ,

'?,('. . 4 -," . , ',. % . . *~ . s . -, p 4 -. ,."p "4' ' " ". -''' " '" " ' ' " " ,, - . * - ," " ' * " " ; } % 
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reads its input from the input links, performs a specific computation and

then produces its results on the output links. Here, we will assume that a

cycle terminates with the initiation of the next cycle.

In clocked systolic networks, the cycle of all the cells are Initiated

simultaneously by an external global signal (a clock) that Is broadcasted to

every cell. The duration of the successive cycles is the same and is often

called *one time unit". We repeatedly used this terminology In our discus-

sion.

' On the other hand. the initiation of the cycles In self timed systolic

? networks Is not synchronized, and each cell determines locally the Instant at

which its cycles should start. Many protocols may be applied- to organize

self timed systems. Here, we consider an organization that is directly sug-

gested by our abstract model.

Assume that the initiation of the first cycle is synchronized by a reset

signal in all the cells In the self timed network, and that a new cycle in

. any particular cell is initiated at the instant when the cell produces the last

output of its current cycle. Assume also that each communication link in

the network is augmented by a pair of Request/Acknowledgment lines,

denoted here by REQ and ACK, respectively. These lines are used to

implement a 2-cycle, non-return to zero shake-hand protocol [501 between

the sender S and the receiver R of the data on any communication link.

REQ and ACK may carry a single bit (0 or 1) from S to R and from R to

S. respectively.
O.

-. The protocol is breifly explained as follows: S does not send data on

the communication link unless REQ and ACK are In the same state (both 0

or both 1). After sending the data, S changes the state of REQ signaling

-' that the link contains valid data. When R senses that REQ and ACK are In

..-.
IL1

-. ., .. .. , .. ... . ,. . . , . . . . ,-. ., ..... . . • .. .. - . . ... . , . -. . . . . . ..- ,, . ,,.... . . . .
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different states. it reads the data and changes the state of ACK indicating

that it received the data and that it is ready to receive new data. More

descriptively, after the first cycle is initiated, each cell executes the follow-

ing algorithm indefinitely (unless externally forced to halt):

ALG4

1) Wait until the REQ and ACK lines associated with each input link

are in opposite states.

2) Read the input data and change the state of the corresponding

ACK lines.

3) Perform the computation on the Input data

4) Wait until the REQ and ACK lines associated with each output link

are in the same state.

5) Put the results on the output links and change the state of the

corresponding REQ lines.

6) Initiate a new cycle by going to step 1.

Note that any REQ/ACK pair of lines associated with a network input link is

initially set such that REQ and ACK are in the same state. This indicates

that the link Is ready to accept external Input. On the other hand, the

REQ and ACK lines associated with any other link in the network are ini-

tially set to opposite states to Indicate that a certain data item is initially
,%

present on the communication link (this item may be 0).

With this general definition of a cycle in a systolic network, we gen-

eralize the physical interpretation of part [A31 of the abstract model (see

*I Section 2.2) to allow for its application to systolic networks irrespective of

a- the method used for the synchronization of their operation. More specifi-

cally, if X is an OUT edge of a node u in the graph of the network. then %%

tne sequence 4. associated with x is interpreted as follows:

V=

.. .

. - . % . ..
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1) If node u is a source node, that is. if x is a network input link,

then Iv (t) is the tth data item that is externally transmitted on x from

the input source.

2) If node u is an interior node, then jv(1) Is the data item that

appears on xv at the beginning of the operation of the network. and for

-* -- any t>1. f (t) is the data Item that is placed on xv by the computa-

* tional cell u as the result of Its (t-l) a t cycle.

* " With this general Interpretation of data sequences, a systolic network

• *.. has to satisfy some constraints In order to ensure that the causal equations

I i1 m
= ru(71 u" ?u- i=1. .n (5.26)

associated with an interior node u indeed model the computation of the

1 man 1
. corresponding cell. Here, yu,...,y u  and ,- .,x are the IN and OUT

edges of u, respectively. These constraints are:

C1 * The computational cell corresponding to any Interior node u will

not be blocked and will continue its execution for Infinitely many

cycles (unless externally forced to halt).

P2-i C2 : For any I. 1 /4m and t. t01. the communication pattern in the

network will ensure that 7/i(t) Is the data read in by the cell u from

""the link during its tth cycle.

If constraints C1 and C2 are satisfied in a systolic network. then the model

of Section 2.2 may be applied to the specification and verification of the

network.

*For clocked systolic networks. C1 is automatically satisfied as each

cycle is initiated by a global clock that is supposed to run continuously. In

order to satisfy the second constraint C2. we may assume the following: 1)

" No cell places the result of the tth cycle of its computation on the output

links before the end of the cycle. 2) the duration of each cycle is taken to

*%* ******%**.* .. *.** *......* :*,* . * .. .. .* . * , ....
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be at least equal to the time required by the slowest cell In the network to

complete its computation, and 3) the actual reading of the data by any cell

does not start less than a certain time A after the initiation of a cycle.

where A Is the time-span necessary for the signals on the communication
.' , 

.%

links to stabilize. These assumptions are usually Implicitly made when

clocked systolic networks are discussed.

For self timed systolic networks. a shake hand protocol should be used

in order to ensure that the constraints C1 and C2 are satisfied. This pro-

tocol should also be obeyed In all external interactions (inputs and outputs)

with the network. For example, if the protocol defined by ALG4 is used to

synchronize the operation of the cells, then all Inputs and outputs to the

network must satisfy the following rules:

-7. 1) A data item is not transmitted on a network Input link unless the associ-

ated REQ and ACK lines are In the same states. The state of REQ should

be changed after the data Is placed on the link.

2) For any input link x in all the elements in the infinite sequence fin'

including don't cares. are transmitted on Xin. However. a 0 item may be

transmitted by simply changing the state of ACK without placing any signifi-

cant data on the data lines of x/.

3) For any network output link x0  every output item must be collected.

even If there is no Interest In its value. In this case. the collection of the

data is simply achieved by changing the state of the ACK line associated

with x0

It is clear that the protocol described In this section ensures that dur-

%-%. ing its tth cycle, any cell u will read the tth elements appearing on its

input links yu''" *'Yu" provided that these elements are. at some point of

time, transmitted on the corresponding links. Note that the only reasons

* -ji

-- .O 

-
-V*p 

.,* 
t
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that may prevent the tth element 711 (t) from ever being transmitted on

are 1) is a network input link that Is not supplied with data items, or 2)I

Is an OUT edge of an interior node v. and the execution of the cell v

was blocked before the completion of its (t-l)t cycle. If we always supply

A,. the inputs when required, It is clear that the network will satisfy the con-

-' straint C2 if only the first constraint. C1. is satisfied.
-,p.

In the literature of distributed processing, the constraint C1 is usually

called the "liveness property* and may be formally verified with the help of

the so called temporal logic (371. This formal verification is beyond the

scope of this dissertation. However, we illustrate here the steps of a for-

mal proof by the following informal argument: Assume that any cell in the

% network does eventually complete Its (t-l)th cycle for any t>1. This implies

that for any communication link xi In the network, u~ (t) will eventually be

transmitted on xu . In other words. the Inputs of the tth cycle of any cell

in the network will eventually appear on the Input links of that cell, and

,, hence, each cell will eventually read its appropriate inputs and thereby free

its input links. This, together with the fact that the outputs of the network

will eventually be read. leads to the conclusion that any link in the network

will eventually be ready to receive its (t+1) t element. Hence. each cell in

the network will be able to output the results of its tth cycle, which means

- that every cell in the network will eventually complete its tth cycle. Adding

to this a demonstration that every cell will eventually complete its first cycle,

we may show that each cell in the network will execute infinitely many

cycles, thus satisfying the constraint C1.

Finally, we note that, in the organization for self timed systems dis-

S_. cussed here, the role of the don't care elements Is very crucial. More

specifically, 0 is interpreted as a data item rather than a 'nothing'. In

I.>

-- . - .-- *- . -.- -, , .- - -. . .- - .' .-. . - -- - . ,- " . .: : .' ., -;,.., - -. ..-...-- ".".-. .-. ,.. ..- -.. . .
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other organizations of self timed systems, the operation of each cell does

not start before the cell receives significant input data ( non-8 items).

Systems of this type may result in a dead-lock situation, thus violating the

constraint C1. Clearly, the organization and verification of self timed sys-

tems is still a wide open area for research.

,- . o%
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6. INTRODUCTION TO FINITE ELEMENT ANALYSIS.

Finite element analysis Is a technique widely used by engineers [57,42]

and applied mathematicians (46.511 for solving boundary value problems for

*' ~ partial differential equations. In the linear case. a majority of these boun-

... dary value problems can be formulated as a variational problem of the fol-

lowing form:

* 4

Given two Hilbert spaces 1' and ' an appropriate bilinear opera-

':1: tor ev and a corresponding linear functional on X_. find the

, function %peM10 such that

'(v.,p) = (v) for all vee22 (6.1)2

For example, consider the 2-dimensional heat conduction problem in the

closed domain Q shown in Figure 6.1(a), where the curved part of the

boundary aQ (denoted by aQ1) Is thermally insulated and the temperature

distribution on the straight part of the boundary aQ 2 = aQ - aQ 1 is

forced to be equal to a given function g(xy). If o(x.y) and f(xy) denote

the temperature and the rate of heat generation at any point (x.y) iEQ.

respectively, then the equations governing the heat flow q a (a'M'A) are

a ap -i w 2- -f (xy) on Q (6.2.a)ax "x ax ay y ay
"' =0 on 801 (6.2.b)

S= g on aQ2 (6.2.c)

-° Here w and w are functions that depend on the material properties (e.g.

specific heat) and Is the derivative of u with respect to the outward unit
8n

*I L* normal to the boundary. The variational problem corresponding to equation

1 2
(6.2) is to find a function p(x.y)EW (Q) such that

'*y°...If~j'~..C'K.KQK...........*...*-*. .*.
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"-"'"where is a line integral evaluated on the boundary aoQ2  The defini-

2 tlon of the Sobolev space W 1 .2  may be found in books on functional

-'.-',analysis such as [1).

;+,..-.+In this dissertation, we will restrict ourselves to variational problems in

f ' .i"which Q Is a bounded domain In a two dimensional space with coordinates

"i"'....(x~y), and the Hilbert spaces ;1ana VY are identical and from now on

I,2
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2=wvv f rd 8(x~y) D r V (XY) Djp(x~y) dx dy t9g0 (6.3.a)

r.1=0

",.v)= f tUx.y) v xy) dx dy + (6.3-b)-.. . Q63b

where f and ar =a ,r r,1=0.1,2, are given functions, go and Y' are

line Integrals over the boundary aQ of Q. D1 and D2 are the differential

an 8operators - and - respectively, and D is the Identity operator, that is

D P=p. The form of the integrals g0 and g1 will not be specified In

- detail as this is not crucial for the purpose of our discussion.

The finite element process for the variational problem (6.1)/(6.3) begins

- - with the specification of a mesh that divides Q Into m finite elements ,

e e=l... ,m (e.g. see Figure 6.1(b)). In addition to its geometric shape.

each element Is identified by a number of nodes. With each node. we

E.L associate a basis function which is a piece-wise continuous function that

. equals one at that node and zero at any other node.

...

..~

(a) A three nodes (b) A four nodes (c) A nine nodes
.- triangular element quadrilateral element Lagrangian element

Figure 6.2 - Some element types

In the following chapters, we will make the reasonable -- albeit some-

what restricting-- assumption that all the elements in the mesh covering 0

are of the same type, and that each has k nodes (Figure 6.2 shows some

element types frequently used in practice). Each node in a specific

;:-Ca: ,.
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element e, le(rm, may be locally Identified by a pair of indices (ei), for

some i. 1 i4k. Alternatively, a global scheme may be used to Identify

each node by a unique integer i. 1 (in, where n is the total number of

distinct nodes in the mesh. The relation between the local label (eI) of a
P.

node and its global label i Is defined by some mapping

glob:[1,m]x[1.,k -( 1.n], where j=glob(e,i). Accordingly. we may define for

each element e, the boolean matrix M of order k Xn such that for 14i k,

14i 4n. we have

1 if glob(e.l) = I

M (,) = (6.4)
0 otherwise.

VSe

The matrices Me , el, • 1,-m and their transposes M9 T will play an

important role in the finite element analysis.

As an example, consider the mesh in Figure 6.1(b). where each finite

element Is labeled by a number e. e=1.. .,12 (written inside a circle), and

each node has been given a global label j. 14i420 (written next to each

node). Figure 6.1(c) Isolates the finite element e=5 and gives each of its

nodes a local number such that

glob(5,1) = 6
glob(5,2) = 7
glob(5.3) = 11
glob(5.4) = 10

Thus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 00
M =

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 01

000000000 10000000000 "

Given a finite element mesh. we reformulate the Integrals in (6.3) as

the sum of integrals over the finite elements

I ' " " ' ' • ' . " - " " , ° " " " " " * ' - - " " " " ' ' ' ' ' ' ' " ," • " ' _ ~ l = ' - " I
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if= f a D l dx dy ]9 i (6.5.b)

=1 w r.l=

% q (...

here 0. and 6 1.e are the parts of 90 and 9 ' evaluated on the

-' boundary of element e if this boundary intersects with aQ. and otherwise.

jO~e .y1.0 0.

Now. the space of the functions vp and v in (6.5) is replaced by a

space of piece-wise spline functions over Q; that is op and v are approxi-

mated on each finite element s by

.. E.) = '.* V'e..) (6.6.a)

v(xy) = i V.i e (x "y) (6.6.b):'""" I=1"

where oe9J and ve i are the values of 'P and v at the node (e.i). respec-

tively, and each V9eis the basis function associated with node (eji). With

0.1 ?'"the approximation (6.6) In (6.5). it turns out that the values v of the

Sr approximate solution V(x.y) at the nodes of the mesh satisfy a linear system

of equations of the form

H u =b (6.7)

where

1) u is an n-dimensional vector such that its ith component u is

the value of op at the global node i. that is. if i=glob(e.j). then
e -a

2) H is an n xn banded, symmetric, positive definite matrix called the

" . global stiffness matrix. With the matrices M of (6.4), H may be

expressed as the sum

%%

.I- P.m. L .
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m
H = MOTRe M (6.8)

of elemental matrices Re = H S . e, -=....,m. For a specific

element e. the (1./)th entry of the k xk matrix H Is computed by

the formula

l r.i= f ar.1 Dre DIe.A dx dy] (6.9)

Then. He is obtained by adding to each entry H e  the term

Se =I resulting from the discretization of 4PO0e in (6.5.a).

This term. :0. is a line integral that is not equal to zero exactly

when both nodes (efl and (e.J) lie on the boundary a8. Hence,

most of the elements of the matrices Se = (S /,1  e=l"1'"m are

zeroes. Moreover, if the boundary conditions associated with the

problem are of the natural type [57]. then the term Yo disappears

from (6.3.a) and all the matrices Se become zero matrices. In fact.
n,'

for any finite element problem, the work associated with the computa-

tion of S is negligible compared with that required for the computa-

tion of He.

3) b is an n-dimensional vector called the global load vector which -'

may be expressed as the sum

b= MT [b t s j  M (6.10)
e=1 e=1

where the components of the vector e are line integrals over aQ

and the I component of the elemental vector b is given by

= fe f de. d (6.11) _

The linear system of equations (6.7) may be solved either by a direct

- -' "-A
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method or by an iterative scheme. Direct solution techniques are based on

E the decomposition of the positive definite symmetric matrix H into two or

.-- more matrices that have nice properties, and then transforming the system

• , (6.7) into a number of simpler systems. For example, assuming that H Is

decomposed into the product of a lower and an upper triangular matrices L
and U. respectively. then the solution u may be obtained by first solving the

lower triangular linear system Ly=b and then using its solution y to solve

:v ~the upper triangular system Uu=y. The solution of the two triangular sys-

tems is relatively simple, and hence. most of the work Involved with the

solution of (6.7) is in the factorization H=LU. An advantage of the direct

solution is that the factorizatlon of H does not have to be repeated if we

desire to solve Hu=b' for a different right side vector b'*b. which Is the

case in some problems where the finite element analysis is to be performed

for different load functions.

Alternatively, iterative solvers start by assuming an initial guess u° to

tne solution u . followed by the application of an iterative scheme for

1 2 ofobtaining successive approximations u .u of u The convergence of

the iterates u .u to the solution u depends on both the initial guess

u and on the procedure used to derive u from u . In Section 9.2. we

will consider Iterative solvers in more details.

In summary, the linear finite element analysis Involves essentially the

... following four computational steps: 1) Generation of the finite element mesh.
. .) ..-

" 2) generation of an elemental stiffness matrix Re and an elemental load

. vector -e for each finite element e. e=1,'' .,m. 3) assembly of the global

stiffness matrix H and load vector b. and 4) solution of the linear system of

equations H u = b.

7--.'
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Finally. we note that the solution vector u of (6.7) defines the function

p only at the nodes i=1.. .n. Given u. the value of i at any other point

(x.y)cQ may be obtained from the Interpolation formula (6.6.a).

Remark 1:

In the previous discussion, we assumed that 1P is a real-valued func-

tion. However, the finite element analysis Is also applicable if V, Is a map-

ping into Rd. that is; a function with d>O degrees of freedom. In this

case, the coefficients ar.i(x.y) and the load f (x.y) In the variational formu-

lation (6.1/3) become dxd matrices and d-dlmensional vectors, respectively.

But the basic finite element technique remains the same and all the above

formulas are valid with the following interpretations:

1) Each component u. of the vector u Is a d-dimensional subvector

that contains the values of the d components of so at node i.

'' ' .! #
2) Each entry H/.i in the elemental matrix Re is a d xd submatrix.

and each entry in the elemental load vector S' is a d-

dimensional subvector.

3) The entries of the Me matrices of (6.4) are d xd unit matrices or

zero matrices instead of ones and zeroes, respectively. Hence, the

order of the linear system of equations (6.7) increases from n to nd.

Remark 2:

In some problems. it is natural to choose the function space 0' 40?'

such that any function Opel 0 is equal to zero on a specified part aQ0 caQ

of the boundary aQ. Then, the basis functions Vre. associated with the

nodes (e,i)EaQ0 should be excluded from the expansion (6.6). Although

e ethis decreases the dimension of the elemental arrays H and b for the

elements that have common boundaries with aQo0 ' it has the disadvantage of

causing nonuniformity in the computation of the different elements. A

"p.

** %.
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common method for retaining the uniformity of the computation is to ignore

this condition and to Include all the basis functions In (6.6). Then for each

. node (ei)eaQO , the entries of H and b are changed such that b=0.

H, =0 for 14/k, */t. and HI-1. This Is equivalent with replacing the

ith equation In the linear system (6.7) by the equation ui=O. which guaran-

.-.. tees that the solution Is a member of the space .

....;

- .

--. a

• , * *
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7. A SYSTOLIC SYSTEM FOR THE GENERATION OF THE ELEMENTAL

ARRAYS.

The purpose of the systolic system presented In this chapter is to gen-

erate the elemental arrays H and be
, e=1,... m, for a given finite ele-

ment problem and a specific mesh on its domain Q. In order to simplify

the design and the description of the system, we assume, as In Chapter 6.

that all elements are of the same type. and hence that the number k of

nodes per element is the same for all of them.

In most practical problems, the coefficients a r=0.1.2. in the bilinear -

operator (6.3.a) are constants or slowly changing functions. Hence it is

very common to approximate these coefficients by piece-wise constant func-

tions on each element, In which case we may rewrite the formula (6.9) for

":-"He: . i. as

2 ''• .'.' He  •
Sa a (D . ) dx dy (7.1.a)

rd =0 rfQG0 re) xd

where a r are constants on the element e. Similarly, the load function

f(x.y) In the functional (6.3.b) may be approximated by a piece-wise constant

function and hence, we may rewrite (6.11) as

b Qee fei dx dy (7.1.b)
Q

where each f is a constant on the element e. This approximation, how- __

ever, may not be suitable for some applications, and sometimes It is more

appropriate to approximate f by a spline function in the same space as the

solution function v. In this case we use the same basis functions as in

(6.6) to approximate

9-.
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k
fHX.y) f " .xy)

G=1 r. J

where fei is the value of the load f(x.y) at node (ej). With this. (6.11)

may be rewritten as

b :fqjf9 Vle*q dx dy G7.1.c)

In order to evaluate the Integrals (7.1.a/b/c). an isoparametric transfor-

matlon (57] Is used (see for example Figure 7.1) to map the domain of

each element onto a standard element Q on some 2-dimensional space

(',y'), namely

Figure 7.1 - An Isoparametric transformation
..

k
x = E V1(X .YX (7.2.a)

k
y.(K (7.2.b), Y = "lxY) Yi

1=1

where ri(x.V) = U .eix(x.y).y(xy)). i=1.... k, are the basis functions in the. .

'new space T7). and (x.ye), i=1,.. .k, are the coordinates of the k

nodes in the finite element a

£ The integrals are then evaluated numerically over Q instead of Q.

Without entering into the mathematical details, we give only the final formu-

%5

.. * * * 4 . . , - - . . .~ . .9.. .~
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las used to calculate He . , and b":

H. = 2 q.3.a)
H...1.1 a.= r.t6'I D

q ..5

0 0 q
b. = E w. dete(7.J7bf

i g= I 7Yg 73b
or

k q
E: W dete Oc gV& )~ (7.3.0)

where q is the order of the quadrature rule used in the numerical Integra-

tion. (xg.yg) I g=1.. ".q are the quadrature points with weights and

'., -8-- edet (x.y) is the determinant of the Jacoblan matrix J of the transformation

Qe From (7.2), this Jacoblan Is found to be
.-S.

1., 1 1 2 1

-": e k kS.1 2.2 t i G, i(x x. 1=1

Because of the regularity of the standard element Q. we can easily

af ~ ar
find the formulas for .(x.y) and its derivatives D1, V i  and 02 V-

I-1'ax ay

Then the derivatives Dr ji, r=1,2 and i=1,. • ..k used in (7.3.a) may be

. obtained from the transformation

Dn (= I- D (7.4)

e -T e T
- " •where J I Is the Inverse of the transposed Jacoblan matrix [W IT. This

inverse is explicitly assumed to exist.
0 -

It should be noted that the quadrature points and weights as well as

,......_ a -

.. the basis functions V. and their derivatives DV. =- and D2 V do
.... ai 2 - a7

5. . . . . .. -. . .. . S .+ -5- . . .. .* ' . 5 * -: 2 --... . ... 5.

.. . - -. .. .,+ - . . ...- . . - - . .- -- • -- . - - -- - - . -,,.5 ,. ., . ,. . . . . -,' ,.', , ,,, , ,, o , "', .. ,,.+ , . . . . ., . .. ,. . , , ' .'+,. '.,: .. : , . .. ,
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not depend on the specific finite element that Is to be processed. Hence.

they may be computed at the quadrature points 9gy g). and pre-loaded into

4, the system before It starts its operation which allows for their repeated use

during the calculations of H and b for e=1.. .. m. On the other hand.

the derivatives D and D2 i in (7.2) have to be calculated by (7.4) for

each element.

The following algorithm. ALG5. computes the elemental stiffness matrices

He for e=1. .. m. (The steps N1 through N5 In the algorithm are parti-

tioned in a manner needed for the description of our systolic system). in
0

this algorithm, we denote by V(g) the value of the basis function i(x .Y )
r9 r

and by Ar(g) and V.(g), r=1.2, the value of Its derivatives 0 r Vir(Xg.yg) and

-r .- yg). respectively.

Algorithm ALG5

INPUTS

0 1 21) ( 7,(g). A (g), A (g)). g=1, -' .q and i=1 -- .k

2) For each finite element ea1, - , - , m

IIE2. 1) (xe.'y ), i =1. ,

* e2.2) a. r.1=0.1.2 /* note that ae = a "1
r ,1 r , .r

For each finite element e= 1-.'.m DO

N) For each quadrature point g=l.-- .. q compute the Jacobian of the

isoparametric transformation from

1 1
j [i(g) J g]= A (g)'. A (g) x1 " J12 J2.2 Ig  1A~) "k~g G

k k.

N2) For g=l..,.,q compute the temporary quantities

:.-.

° ..
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T. () L. . .T(g
2 (g). t( ) 2.1 g) 1(g) . "

(g)l ... 2,2](g )  J (g) (g). .A )kJ.21. k2.US) For =1. (dee).q Do

N3.1) detO(g) = ~(g) je,(g) - g)W

N3.2) V(g) = (1/det(g)) 7'(g), r=1.2. /=1....,k %

N4.1) For /=1... ./-I

q~ ,Vg "g . 0 ,
g =1

N4.2) V'4  Vr(g) (g =,.. =. .
g=1

NS) For i=1,*.. ,k DO

N5.1) For /=1,..., 1-I

H-"a.'-J i..2 2

.(.. ,r=o C =o >'

N5.2) H/ 2/ (C , /) ,i',"
r=0 /=r

where Cr./ equals 1 if rl, and 0.5 if r=l.

The calculation of the load vectors be , e=1 •. may be Included In

ALG5 as an additional step. This step depends on whether we will use

- (7.3.b) or (7.3.c) for computing be . More precisely, If (7.3.b) Is used then

N6) For i=l.--.,k DO

* q -(g.ii;"  bl = Ie E:

g=1

On the other hand, If (7.3.c) Is used, then

-'. N6) For 1=1.--- .k DO

m0l0

;-l-'.b f Y f

. ,. .i. . . l. .

S.- --.... . .. . , . , . -, .-.. .-..- .... ...- .:-. . .
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Figure 7.2 shows a block diagram of the systolic system that executes

this algorithm. It consists of a local memory LM to store the pre-loaded

0 1 2values of V (g). a (g) and 4, (g), g=1. .q. and six systolic subnetworks

N I... NI6 that are arranged in a cascade such that the output of a sub-
network is an input for a following sub-network. Each sub-network is

L designed to perform the computation in the corresponding step of ALG5.

-...,:-
::.-. ( , '. ./

jU'

.-. J s.,
r.l ) arl...eK L-..

i7 Figure 7.2 -A general block diagram of the system.

In order to compute the matrix H efor a certain element e. the coor-
i=.' ak eainates of the nodes .x y.) =, k and the coefficients a~ rJ =.0. 1.2.

i . r# .

for that element, are fed to the system via the subnetworks NI and N5.

respectively. The entries H. =1-..k. i =1. .1J of the symmetric

'.'" ,. J. , ./,.

matrix H are then obtained from the sub-network N5 after a delay period

of (q+3k+16) time units. where a time unit is the maximum time needed by

4. :: .a n odt comput elli the symto e form It pertaion Tien is basiO-

cally the time required to perform a Multiply/Add operation. or a division

*"'. whichever Is larger. The subnetwork N6 is used to compute the vector bi

o.

'"" ::- matix H
e

are thn obtined rom th sub-etwor N5.aftra ea pro
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The system described in this chapter provides a noticeable speedup of

order qk over the serial execution of algorithm ALG5. However, the real

advantage of the system lies in the possibility of pipelining the computations

of the stiffness matrices for e=1, - -,m, and of obtaining one matrix every

3k time units. Of course, we also obtain the advantage of a non-conflicting

and smooth data flow in the system which greatly reduces the memory fetch

times.

In Sections 7.1 through 7.6, we describe the architecture of the six

subnetworks NI ... N6. that execute the corresponding steps in algorithm

ALG5. Moreover, we will derive the I/O description of the individual subnet-

works and prove that the system generates an elemental stiffness matrix and

the corresponding load vector if appropriate input data are provided. Then

in Section 7.7, we show how one can use the technique described in Sec-

tion 5.4 to prove that the suggested system can be pipelined for the com-

putation of all the elemental arrays.

It should be clear that alternate designs for the components of the

system may be given. However, one advantage of the system described in

this chapter is its flexibility in the sense that only minor modifications are

" needed in order to use the system for different values of k (element type)

and q (quadrature formula). Moreover. our primary goal Is to show the

applicability of the systolic approach to the generation of the elemental

arrays, and to demonstrate the effectiveness of the formal model for a pre-

cise specification and verification of systolic networks with computational

cells more complicated than those of the simple Multiply/Add type.

7.1. The Subnetwork Ni.

The graph of the systolic network N1 is composed of 2q interior nodeS

as shown in Figure 7.3(a): each node is labeled by two integers (i.g) i=1.2

+.. .... .... . . . ...-..... . + . .-....-.- ,- " .- .-.- ' '.',.;...-,,.-+ ,- . 4'*' '. . . . , ,'t' .
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and g=l.....q. where q is the number of points used in the numerical

g integrations (7.3). The graph also shows the color assigned to each edge,

namely r. p or z.

",/'T,*,

""I

aqa

z 19
-Z A

001

I

1. [e ,.i * - (3

' - ,,,jP

(a) The graph for NI (b) The structure of a typical
cell (i.g) in N1.

Figure 7.3

Each interior node (ig) represents a computational cell whose operation

is described by the causal relations

SCi,g fCi.g (7.5.a)

(7.5.b)

itilg gti-1 i.g xi.g ,g

where s=1 for i=2 and s=3 for i=1. and

... i- .. A iC g ] ( 7 .6 .a )
-x" 'g Ag i,. [POi' Cig

SL
-'S.% * °

,',,,- ' ,f ' ,,. . - , ;, . ,. , , ... , . . . .. .. - .. . . .. , . . . .- - , .. , .. . . .. .. . . . . , -
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'g=Agil'' [Pig cig] (7.6.b)

The graph in Figure 7.3(a) and equations (7.5), (7.6) specify NI com-

*'%. pletely. In order to analyze the internal structure of each cell (ig) more

- Lclosely, we first note that equations (7.6.a/b) indicate that a cell should

---- contain a multiplier and two accumulators (see Figure 7.3(b)). The accumu-

, lators start operating at times g+i and g+i+1, respectively. They accumulate

the output of the multiplier every third time unit and reset themselves to

zero every 3k time units. The content of these accumulators at consecutive

time units is expressed by the sequences Xig and X. As is clear from

equation (7.5.c). each cell contains also a multiplexer that starts operating

at time g+i-1 and multiplexes the Input it. and the contents of the accu-

mulators with time ratios 3k-2:1:1. The delay element fl3 is introduced in

Figure 7.3(b) under the assumption that the elements 'i' A and M do not

consume any time. In practical Implementations however, these elements do

consume some time and consequently the element labeled fl has the func-

tion of a synchronizer rather than a latch.

After having described the architecture of the network. we prove the

following proposition about the I/0 description for N1. It Is an explicit rela-

tion between the network output sequences P 3 ,g. i 3 ,.g g=l....q. and the

network input sequences C il' l.g" pl.g" i=1.2. g=l.*°.q.

Proposition N1.1 I/O description of the network N1. For g=l,-- .,q, the

following relations hold;

"-o-°

P3,g = Pf2 (7.7.a)

=lM 3 k - 4 1.1, 1.1 - 3 3-
3 g 3 ' 1,g ")2.g " 2.g 3 1.g , 7..g

where

= Ag tik,3  /-I g-1 (7.7.C)i/- ' g AP 1 g n CI
= -.

!.;-
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Qil .k .3 i-l1 p g-1C (7.7.d)i'g

Proof* To prove (7.7.b), we first note that (7.5.a/b) have the solutions

C i-i CIA (7.8.a)

fl~ (7.8.b)

Then from (7.5.0) we obtain for g 1.* - ,q that

3k -2.. 1
3.g 9+.1  2,22g ,

where X. and X are as given in (7.7.c0 and (7.7.d), respectively. Withi~g I'g

Property P5 from Appendix A this may be rewritten as

V3 n M M3k-2 . 1.1 (M3 2 .1 .1 (fl 3 V 3 n3T~- -
3gg+1 g+3 1, nX1.g ' i rg 1' .g T 2.

v-. .Finally, we obtain (7.7.b) by applying property P13 from Appendix A. Equa-

tion (7.7.a) results directly from (7.8.b).U

In order to perform the calculations In step Ni of ALG5 for a certain

finite element e. 14e~m, the input sequences must be described by

n1g= 6(7.9.a)

= fn 1 (e 2 j feII=1.2 (7.9. b)

P1.g = 171-1 P~k (MI I I(e 2 , 0 . ne 2 o 0 n2e2 p g=1,' - -q (7.9.0)

where

T Q e) T T(g.0) T(O g"Q = T(P 0 2) k (7,9-d)

and

g.1 O

* {f i 1

n,*a . % .. .. .. .. . ...
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In other words. and 0contain the coordinates of the nodes of the eie-

ment e. and f 9 . 4% .1, and f4% 2 contain the shape functions and their

derivatives. A pictorial representation of these input sequences In the case

k--3 and q=3 Is provided In Figure 7.11 using a time diagram of the ele-

ments of the different sequences at consecutive time units.

Proposition N1.2 With the Inputs (7.9), the outputs of the network N1 are

described by

P3g= j t 3 M ,1'12ej 11 e n2e2 pg))g1.- q(.1Oa
g% t3k - Ie

V3g= n 1 g =1.. .q- (7. 1O.b)

where T(I38 4 and 0 (t) J J1 (g) J 2 (g), J (g) and J,(g) for

t= 1. 2. 3 and 4. respectveiy.

Proof :The proof of (7.10.a) follows directly from (7.7.a). To prove (7. 10.b),

we first note that the operator P3 in (7.9.c0 Indicates that the first 3k ele-2

ments of the argument are repeated twice in p,.This repetition is only

necessary for the operation of the subnetwork N2. and will not be con-

sidered here. Hence, we will replace the last 3k elements of the repetition

by don't care elements which reduces (7.9.c) to

= fl- 1  IM 1  2 2 2 2
P1  1 (e Vg0  ne #Pg1 .ne 8 )p. (7.9.e)

J1. Now substitution of the input sequences (7.9.a/b/e) into the i/0 descrip-

~. .. tion (7.7.b) results in

173 ) fl Mt 3 kll (a x x x d7. 11. a)
3,g 2,g ~2,g 1.g

Oz. Here, by (7.7.0,. the definition of the E operator, and the properties P1 and

P7, we find that

=fgIti' 2 A.~3 IM1'' 22 226
ki~g n A M 1 (19(Irg, 0* 4i) 171 nePg 1*fi n 91e2  A4i1

and, by P14, that
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+gi-1 A1.k. 3  2 *..'. "A e NI.g[Og ] (7. 11. .b)

Similarly. we can show that

X = n'g 1 Alk 3 e2 [O (7.11.C)

For a further simplification of the equations (7.1l.a). we consider the

N. .definition of the multiplexer operator with the restrictions (7.9.d) for the

involved sequences. This gives, for g=1. .. q.

7r 3.g g3-

where T(O9 ) = 4 and

S)2 (gg+ 3k-l) for t=1

" W"X2,g(g+3k) for t=2

(-) ,g (g +3 k -2) for t=3

X1 g(g 3k-I) for t=4

- Moreover. from (7.11.b), P11, and the definitions of the shift and the spread

operators. we obtain that

X glg 3 k- 1 ) ( g l e 2 A 1k.l [Og.1 A ]](g 3k-1)

A = k ,111(k)

k k
.'.','. = k 1 e = e

" Q) 40(1) A E (g) x. (g)

where J a (g) is specified in algorithm ALG5.

By a similar argument, it can be shown that ,8(2). 0 (3) and 0e(4)

are equal to (g). Je (g) and J (g), respectively, which proves the-. - i-",ar e ual to 1,2 J2.1 J2.2

proposition and shows that the network performs successfully the calculations

:.-., yin step Ni of ALG5 for one finite element e.0

kr,. kt

h .
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7.2. The Subnetwork N2.

The graph of the subnetwork N2 is composed of q identical rows

q=1.. - .q (see Figure 7.4(a)) where each row consists of three interior

nodes (i.g), i=3,4,5. The edges are :;iven the colors p,r,s and s as

-. shown in the figure.

"* ' -1 "

* 0 4

: 17"

%'..

I

(a) The graph for N2 (b) The structure of a cell
* (g), 1=3.4 In N2.

Figure 7.4

For a given row g. 14g q. the computation of a cell may be

described as follows:

For cells (3.g)

f 3

77 4.g = 3.g P4.g f P3 ,g

a05,g =3, g g3 3,g t2 [-f 3.g) "712a

............ ***%~~

*. ,. . . . . .

.&.= . . . .
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SFor cells (4.9)

.6.g = l 7 4,g P5.g = f" P4,g

,5.g [P4.g gl t4 H-4.g gt3 )4,g a (7.12.b)

- .For cells (5.g)1.1.1
P7,g = n M g 1  (P 5 ,g 0 5.g * °5,g) (7.12.c)

From the above specifications, it Is clear that cells (3.g) and (4,g),

1g~q, have identical structure (see Figure 7.4(b)) and differ only in the

reset times of their accumulators. multiplexers and memories. To reset

these elements at the proper time, external reset signal can be propagated

in the network as explained in Section 5.2.

Proposition N2.1 : The network I/0 description of N2 is given by

7- 11, g=l' -.- .q (7.13.a)' . '.." 6.g #3.g ' "

n 3  M . .1 ( g= 1-. - .q (7.13.b).,•..'.', OP7.g Mgtl P3.g 'X3.g -'\ 4,g)  g l- .q (.3b

- [where

= N2 E 3k 3k V (7.13.03,gP 3 E[P 3 #3.g] - ft (P3.g gt2 3.g
"E 3 k f 3?3 ] 2 3k 3(3.gd

. 4.g P 3 .g g 3 3 3  g .I-4  3,g

Proof Equation (7.13.a) is trivial. In order to prove (7.13.b), we begin by

applying property P1.3 to equation (7.12.a):

g.3.1 1.1.1 3k 3k05 A Mg EP0 .(-i5.g' g (P3,g 3 3,g P3 .0  gt2 3,g]

Then, we apply property P14 and use 0 to replace sequences whose

values are irrelevant to our analysis. This gives

aMn(M 1.1.1 (8 naE 3 k A] E3k 7 1 5)
5 ,g = 3.g g t3 73.g [P3.g +t2 3.g0 )

*- - which from P5 may be written as

-. . . 0 . 1,1,1 ' f3g
g= (8. X 0 6) (7.14.a)5.g 9t13.

where )3,0 is described by (7.13.c). Similarly from (7.12.b) we obtain

%,,
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a M1.1.1
5g + (4. .( ). ) 7.14.b)

where X 4,g is described in (7.13.d). Finally, substituting (7.14.a/b) in

(7.12.C), and using P13 we obtain (7.13.b). which completes the proof.m

The input links of N2 are directly connected to the outputs of N1. and

hence the input sequences v 3., and P3,g g=1,... .q are described by the

formulas (7.10).

Proposition N2.2 If the inputs to N2 are given by (7.10). then its outputs

may be described by

Gi, + g 3 k + 3 ,e ,"
g le g=1. • • .q (7.15.a)

g7 +g3k +4 M.1.1 2 2 2 27.g(e . n . ne . gn1. • .q (7.15.b)
g091 g21

where T(g 1)=T( 2 =k and 'g1 (t)=Tj (g), irg,2(t)=T2(g). with Tt (g) and

T2 (g) as specified in algorithm ALG5.

Proof : The proof of (7.15.a) is trivial. In order to prove (7.15.b). we will

ignore the value of the first 3k+g+1 elements in the input P3 ,0 . and hence

rewrite (7.10.a) as

= +03k+ 1."' 1  2 e2  2 2
P3.g = 1 (9 g.o fleg.l n 2e g, 2) (7.10.c) ,

In order to find the output sequences P7 . we obtain an explicit

description for )3, and X by substituting the input sequences into N

(7.13.c/d). Indeed. from (7.10.b/c) It follows that

P E 3  = g3kt1 M 1, 1 (e 2 ' re 2  g .2e22

° 3,g jt g 3 l3,g M 1 ,0 ,1 V9 .

a E3k ng .3k- 1 ,e
g t3

We then interchange the shift and expand operators using P6 and apply P18

to get

.. ..- - ... -....... .. .,. ................. .. . . . ........... ...-. ,--........... .
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Pg*E 3 k r = gt3k-1 In2 M1I' (e2 11 n 2 p1 2 n 2 )
P3g gt3 3, (f M1 1 e g. Enk fp

4

n . 8e(4)]

- 2Q~t ~'C . 2 [J(9) Wg1

where, as usual, the sequences irrelevant In this context were replaced by

6a Similarly, we obtain

P A =E ~ V Qt3k +1 M1.1.18 'D 12 e2 I g #3g g+2 3.g (6 . 1 g e (.2 1

and thus from (7.13.c) that

rI 3k +3 M1.1.1(1 g3.g Ifg( l[J ()..
31 2~~t . 1 g.2eW~g

g +Q3k +3 M1.1 .1  2. .6)-

1 (a ne ii,2 (g),]f

= Q3t ~ 1  2~ ne 2 ~ ~g.1 2 ~. Ig 'g.2 1

By a similar analysis It follows that

X~ '4.g tne- M I 1  (6. 6 n ie 2 W I (g) V g. I J 2 (g) 'g. 1)

Finally, we substitute into (7.13.b) the computed values for X 3, and

X~4 together with the input sequence P3gand apply properties P5 and

P13 to obtain

g 3k+ IM 2 2 2 2

where

W V 0 (t = (g) ~(t) - J~(g) W p 2 t

e1 2 1

jg2t (g a 'g)2 - J (g) A () = T (g)

step N2 in ALG5.E11

C-7
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7.3. The Subnetwork N3.

As in the case of N2. the subnetwork N3 Is composed of q Indepen-

dent. identical rows, namely. one for each point used In the numerical

integration (7.3). Each row performs the calculation corresponding to step

N3 in ALG5 for a certain value of g, 1g~q. In Figure 7.5. we show the

th
*. graph for the g row of N3. The function of the cell (6.g) is to compute

the determinant of the isoparametric transformation as In step N3.1 of algo-

rlthm ALG5. Its operation may be formally described by:

Figure 7.5 - The graph for row g of N3

3*k 3 2 O
a.g °7,g 8,1 = gt3k+7 .g 6..6,g - 6.g m 6,9g

The cells (7,g) and (8,g) perform the computations in steps N3.2 and

N3.3 of ALG5. respectively. Their operation may be described by

".- ; = 1,2 (2 7, [2 7
P8 ,g M(g 3 k +7 ( g 7.g O7 )

Pq' = P8,
179,g = f(Wg 8,g P8,g]

With this description and the inputs (9.15). it is easy to obtain the out-

put on the links p and r g=1,.- -. ,q, namely

g .gt3k t8 .11.1 2 - 2 - 22-e = M ( n v ) (7.16.a), -' 9"g.9, g, q' g.
9,g.=g 3k t8 I 1 2 f2 u f2e 2 (716.b)

SPgg.0 g.1 g.2

r _-r ofwhere v gr(t) = t (g), Vr(t) = t (g). and the values of t'w' and t (g)

are as given in step N3 of ALG5.

* . . . . . . . . . .. .*.. . .
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7.4. The subnetwork N4.

In this subsection, we describe a network that completes the numerical

integration by computing the quantities Y." = q

Id i. g1 V V/ for the ranges of
the indices in the corresponding step of ALG5. The subnetwork is

described by the graph in Figure 7.6. The node I/O descriptions of a typical

interior node (lg) 1=9,..• 8 3k. g=1. .q. are given by

" n 2 V g(7.17.a)
il,g Ig

.I = Pig (7.17-b)
= [ig * •i Pig (7.17.c)

".'-"g I .rR5.

As this description shows, each cell latches the p and r data streams

by two and one time units. respectively. It also performs a Multiply/Add

operation and puts the result on the zth output link.

Proposition N4.1 : The I/0 description for N4 is given by

- i.q~ i = i 8t.* gQ I1 9 g P9,g] =9. *. .8+3k (7.18)

Proof To prove this proposition, we first write the solutions of (7.17.a) and

(7.17.b) in the form

% 2(-9)
f . = n i =9,. • .83k. g=l,.9,g(-9)
Pi.g = P9,g i=9... .8-3k, g =1. .,q

- - and then substitute them into (7.17.c). This gives
Ci-. -. . 2(i-9) (71i- 9

41.".',g+1 = n3 [I g + r) l9,g PggJ (7.19)

•.- =jBy Lemma 1 in Appendix A. the solution of (7.19) for a fixed i, 9(i48+3k
is then found to be identical with equation (7.18). This completes the

proof.U

.,; .,

.o.:"..... ..... . . .. ... .- 5 -...... .... ° .. .. . .° . . . . , .. . . ° . .. . .•. . . . . . . . .. .



128
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O<uk-1 and 04v(2. More descriptively, we divide the 3k columns of N4

into k groups of 3 columns each. Thus. we rewrite the network description

(7.20) as

q
Cu.v.qtl = _ 3uvtlq-g I3u v V 9. g' P0 g j (7.21)

i1
Proposition N4.2 : With the inputs described by (7.16). the network N4 has

the following output:
= 2(3u+vltw -a

Cu.v.qtl 71u+V u=O....k-1 and v=0,1,2 (7.22)
with

- 1.1.1 (2 0.'V e2  lv31 -22 2 2vE12)71 N u = M1 IU u n 8 701u "

where 03 is a modulo 3 addition. w=q+3k+9, and we have for 04!2.
-. . Y -u ifr'Ir if r(l

-, 
T (71 r) =ri and 7, (t) = ,t+u

S k-u-1 if r> y.1 f r>/

Proof : Using the input sequences (7.16) in (7.21) we obtain

"u ,:qt1 = 3u tvtw , 3 utv .1.1.1 2 vg . fe r)
"' u,v,qtl E 1 ,I M 1  (.2 " 2-g= , O"11" 9 2 e 2 ,2

I 1 g.0 .e g

n 3utvtw q 1.1,1 (e22 22 (7.23)"""" ~ v,g M1 ., g,1' .2g

g=1
where again, w=q+3k 9 and X'.g is found by properties P4 and P5 to be

equal to
1 11 2 - ne n 1n2 e2 u ) if v=O
l I(eI |U .O' e 2 U - 2 2.

"k UV,g = MI 1 U (917 g.2 ' ne2nuV g.0 'i8n g"I i =
1.11 2 t - 2 ut - 22 u' i = M " (e null V .ne n Vg2 n n V if v=

r1 g'1 9'. , 2 g i v=

The result (7.22) is then obtained by first applying P1 to perform the

3u tv
* L multiplication in (7.23), then by pulling nu out of the M operator with

the help of P5 and by applying the summation to the arguments of M (pro-

?.............................................
............................................. •
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perty P1.2). As an illustration of the derivation procedure, we consider the

case v=1 for which we have

qA
,3utltw q 11,1 2 Ut V I

u.1.qtl (g.g=1 9.2 g-
222 UU i.1 2 2

g.0 g 1 ]nI eIn Vg', V 1)

3ui-lew 1,1. 1 I(2,u1 2,0 ,2u01 22u 1,2)n " 7 .u 7e2 nU e n ?Iu

20 0,1 1.2
where, from P1, T(71 ) = k-u-i, T(71 = T(71 k-u and

U U U

0 q q _2 u(g) y,71 U W g V g2(W) g= •t=Utl)j V , (g) =g g=1ttit

q q 1-01
71(Q v 'W Vt) v" (t-u)] = V [V(g) Vtt g) V.t

g=1 g=1

1,2 q _q -1 2 1,2
77(t [ Qt) V U(tu)] IVE [(g) V (g)] V

Finally, we apply P5 to get

=2(3ul) w 1 ,1,1 (e 2  0.1 ne 2  1.2 n2 e 2  2.0)
Cu,l,ql1 M1 ( 7u 1 U n u 71'"

which is a special case of (7.22) for v=1. The cases v=O and v=2 are

proved in an exactly similar way."

Equation (7.22) shows that the output sequences uvq contain the

results of the numerical integration needed for the calculation of the stiff-

- ness matrices in the next subnetwork N5. It also specifies precisely the

time of each output data item. In Figure 7.7. this specification is translated

into a time diagram, where we plot the elements of Cu.v,qil versus time

for the special case of k=3 and q=3.

7.5. The Subnetwork N5.

The network N5 Is composed of three different rows (see Figure 7.8).

Row q+1 contains 3k Identical nodes. It receives the constants a on the
£r .1
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Y; . ftYS".. ,.

LU r1,

* 9/

-~~~' Y. ' ' / • .•

5 t

,-.'-. Figure 7.7 -The output of N4.

i i links P9.qe1 r9 .q~l and 39.qi and distributes them appropriately on the

i-31. - inb ~ V coIre link suhta ahitga pern nazred lin
all~~ ..ll a

.. meets the corresponding constant ar. at the right time. Row q+2 also

Icontains 3k identical nodes and computes the partial sums

""" .r = 2 e .iI (C y,
L"" i, arI . and cr.I at,I) i.I for I#1 and 1=i. respectively.

ofr

:=i- where cr, is as given in ALG5. Finally. row q+3 contains only k nodes

'- :'i~ ~ ~ .."4 tttcmleetosu U

r.'

tht o plte te um H = 2" il The edges of the graph are given
"-"'. r=00 1 2

.. -, the colors pr. s, b. zz . zor as shown in Figure 7.8. Note that

nwe used three different colorsz . z1 and z to satisfy the restriction that

esno two edges ending at a node have the same color. To simplify the

* analysis. we consider each of the three rows separately.

*cot We consider first the row q+ in which each cell simply latches the

2 2

.. .. .-. .

• .'. ...*.. P * '

-,-~~~ ~ ~ r.,..',." " .a,, ,.-0 -,- .,,. .,,,r.,..,.. "'" " an "-" -"" a "Y" for /-" and-- .. "".-- repetvey
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z 6

"S.

on the b link to be

n Ch V If i =9t3ut u 0. k- 1

0n oiqt if i =9t3u t2. u =0,.. - 1

where h. =0.5 for /=9 and h. =1.0 for i>9. The factor 0.5 is needed to

*.Implement step N5.2 in ALG5, where only the Y"I <r are explicitly avail-
I .1

-'able for the computation of H I, while we have = for I>r.

For the proper operation of the system the input sequences should be

described by

9,ql Pk (a0
0

'9.qtl = n k (a1 )(7.24)

09.q* t I

where for i=0,1.2. T (a) 3 and a (t) a with 0 denoting.

once again, the modulo 3 addition operation. More descriptively, we input
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on each line three of the constants ae  r,1=0,1,2, repeated k times as3 r ,1

Sindicated by the piping operator P3 (for more details see Figure 7.11).

Using the two indices 0u~k-1 and 04v42 as in the previous subsec-

tion. and noting that the Input C Is given by (7.22), we can easilyi~qtl

show that

..- , 1 2(3utv)+wtl 7 (7.25'a)C'u,v.q 2 = n 3vwl P .v

• ...u ,v ,q 2  = k  u v v (7.25.b)

where h = 0.5 if u=v=0 and h = 1.0 otherwise.

41-I

, p

Figure 7.9 - A typical cell in row q+2 of N5

The 3k cells, (iq+2). 94i<8+3k, in row q+2 have basically the same

structure. each is a multiplier/adder equipped with a demultiplexer that dis-

tributes the results to the output links and C, (see
Pi- I.- i qt3 F

. where u and v equal the quotient and the remainder of respectvely).
3,

Formally, the operation of each cell (i.q+2) Is described by

""1.2 1.2
."P 2 

= 2 M*_9+w 1 (L Pi~q2 + X.) (7.26.a)

V12
Cu q 3 = n Mi-9wl (P1,qt2 +  i L) (7.26.b)

where Xi = 1,q2 A Cl,q+2 and the input P9.q2 is permanently set to
V

* . the zero sequence L. For a description of the outputs Cuql' we solve

(7.26) using Lemma 3 In Appendix A. This yields

S.%
%.

=I
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• M 1 . 2  
-:" " I -9+w l (Xl21' " LI(' ) i=9

i9twt1 I
u q3: Mi_9, (E -2 X + ) i 2 i=10 (7.27)

171 M1, X +i-2 X + X 0 1=11,. ,83k

where, by (7.26) and (7.25). ki = X3u v+9 Is given by

~.3u~v *w+1(p3( 1 )f3ut +v 1
X 8t~t (P (h a) 7) flk-u uv vuvn~uv~w ] p;k_u(hu. v .av) , n v 1v

Using the definition of 71 from Proposition N4.2 and with the help of pro-

perty P18.2 we rewrite X, In the form

i l6u1v+wtl .Iv .1,1.1 (2 O,v le 2a1,vil l 2 e2 a2,v0 2) (7.28)
= M1 #u ' ne'U r u 7

where, for r=0.1.2 .

r v Or e r var h 0 1rv~L u.r h a ((vor)+1) 71r. = = h v r.vr .
-U U. , V U V 8r, r U-,

ri r .
that is T(Au = T(7u) and

u r.1'..'.."

Proposition N5.1 : With the input described by (7.22) and (7.24). the inter-

mediate sequences Cu. u=0, .k-1. v=0.1,2. are given by

-6u+vew+l 1 2 3 2 2.2 2,1 2.0 A
M " (fl e [Ai +Au- + A) for v=O".- uvw M1 2 3 2 . 1 2  1.1 1.0 '

C u.ql'3 =  1.2 (n 3 " 2 [ 2 1 + A 1. 0 ) for v=1 (7.30)

6U+ (302[#22u , I. 0 1 0
n M ( L A ) for v=2

' ' r.I rJ.
where we extended the definition of u such that /, 1 equals the zero

sequence.
O4

Proof For the case i;011, we first use P5 to rewrite (7.28) in the detailed

form

oil
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6utw .111 32 2.2 2 0,0 n2 e 2 1,1f
M (n'U ' AU neIu for v=0

wt 11.1 3 e 2 21. 0  n2e2 0 1  for v=l
)ki =  n6~~ M 1  (n u e AU n 1eu iL Au fov=

/" 6u+wt2 M1.1.1 , 3 2 0 2  4 2 4 e2 1 0  
.,

5 2 2. 1)nM 1  (nl e ILU' n Z e AL n e Lu  for v=2

iK Then. for the evaluation of X 1-1 = X3utv' .. 9 we note that 04v'42 and

hence i-1 = 3utv 8 should be written in the form 3(u-1) 2t9. 3u 0 9 and

3ut1t9 for v=0.1 and 2. respectively. With these forms for i-1 In (7.28)

and the help of P5 we get

,6utw 11.1 - 3 -2 2.1 ne 2 0,2 f2 2 1 .0 .
u M1 ' (ne LU 1  

.AL.'-I nHe e 2'U- 1) for v=0
N2,_ N6utwtl .1.1.1 3e2 1,1 -4 2 2.2 _2 2 0.0,

i-I = M 1  /n e AU n e AL n e Au ) for v=1
,_ 6utw t2 1.1.1 3e2 0.1 _4 2 1.2 _5 2 2.0.n6" M 1  (ne 'U n E 'U n Au for v=2

Similarly. we write i-2 as 3(u-11 1+9. 3(u-1) 2 9 and 3u 0 9 for v=0.1

and 2. respectively and get
2'

6U +w 1 11l 3 2 2.0 2 0,1 2 2 for.2
i'u M1 ((Au-1 U-I - n e u -i1ol

4 111 3 2 1 0 4 2 2.1 022 ,2
n.4i =X i e6u+w~l .I (n 3 'U101 e 2Uu2"1 I N e2021)  for v=1

611.1(3e2 0.0 4e2 1,1 5 2 2.2,n 1 (n AUU n e U n e AL. for v=2I,
1 "Then by adding these three formulas to get i 41 ,i2 + nki_1 + X.iV

and by substituting the result in (7.27). we directly obtain the equation

(7.30) for 1(u~k-1.

The case u=O. that is i=9.10 and 11. can be analyzed in an exactly

* 'similar manner yielding the result

f) 6utw+v+ l M 1,2 (r13 e 2 [A2.2 for v=0

V 6U++V~l 12 3A 2 1L 1.2 "-. v N6u w +vl 1 '12 (f 3 e 2 [ .] 2 
, 1,1 6 orv

40,q+3 M 1 M ] , + ) for v=1

= 6u+wIv1l 1. 2 M 3G2  L0.2 0.1 0.0 for v2""" i 1 (N e / u "  'u - /.u' ] , ) fo v

which by defining A, L may also be put Into the form (7.30).@

-: '- .0 1 2
Finally, each group of three sequences 'uq3' uq3 and C .

,..:~~ ~ ~~~~~~~~~~ . . . +3'..., . .... , . .. . .,.. . -..,.,. - ... -. . . .,...: :.:,. ,:,.,u:.: , . ,..,,,. :.,. : :,-.:
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considered as input to a cell (u~q+3. 014u~k-1, In row q+3 of N5. The

- operation of a typical cell In row q+3 Is formally expressed by

cu~q4 :":: (1[ A8t 3 1 1 1 0A (7.31)

6ututwt u.qt

where c Uequals to 2 for u=0 and to 1. otherwise.

.5By substituting the sequences (7.30) into the network description (7.31)

- -we easily find the description of the output sequences as

16u+w+7 62 -eu=0* - -A-1 (7.32)cuq14 Ae
where

2r= 2 rd 2 r-1 rdI

2= U~ r=1 1=0
AU

r=0 hrU

Using the definition of Ar.I from (7.28/22) in (7.32) and comparing the

-Spresult with step N5 in algorithm ALG5. we readily prove the following propo-

sition:

Proposi~on N5.2 If the Inputs to the network N5 are given by (7.22) and

(7.24). then the network's output sequences are given by

C u+wt7 e2 -. u =0.. - - -A-1 (7.32)

-4 -4 U

where T(A& ) = k-u and A t) = H
U U t~t +U

Proposition N5.2 states that after an Initial time period of 6u+3k+q+16
th

units, each output link Cuq+ will carry the elements of the u off-
u~qt4

diagonal of the elemental stiffness matrix H. separated from each other by

2 time units (see Figure 7.11).

.

i
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7.6. The Subnetwork No.

The purpose of N6 Is to generate, for each finite element e. the

entries b l. A. In the elemental load vector b .The design of the

A subnetwork depends on whether we apply step N6 or step R6 of ALG5 to

generate be In the following, we consider each case separately.

7.6.1. Realization of step NG in ALG5.

In order to compute b iby step N6. the values of the load fat the

current element e should be supplied from outside the system. On the

-0
other hand, the quantities V1 (g). g =1.. ,q ... /=, .k-- are readily available

on the output links p 3k t9g g=1... .q of N4. More precisely, replacing

* . non relevant Information In (7.16.a) by don't cares, we may write the

sequences on the links p 3k t9,g' g =1... .q as

6k g 82 -
773k +9.g n fl 9,g 9 VQ~* e g=l-- - .q (7.33)

where T (V ) = k and Y =. Vt()

Figure 7.10 shows a realization of N6 by a systolic network that is to

be connected in cascade with N4. It is composed of q+1 computational

cells whose operations are described by

1.2
C3kt9.gtl flM 9 c3 9gtI kt . a g=1- - .q (7.34.a)

0 1.2 ac a'7.4b
~3k+9.q +2 lq+ti ([3k t9qt 1 3k +9,q1' t 1734b

where the Colors of the links are as shown in Figure 7.10. Note that the

cells in N6 are either simple adders or simple multipliers that operate once

every three time units.

The Input links p 3k+9,g' g =1,* .q are connected to the corresponding

output links of N4. Moreover, we set the link Z3k +9. permanently to zero



-2--

P i
ik4

%4-

p+

+ Z

Figure 7.10 - The graph for N6.

and supply the load f through that is
thog 3k +9,q 11

3k +9.1

3k: 9.ql + I q +9k+9 e 2  e (7.35)

where T(;p0) = k and ;pe(t) = fe. for any t~k. With these Inputs. it is

straight forward to prove that the output on the link Z3k+9,q 2 is described

by

,3k,9.qt2 n Nq+9kt10 e2 Ak (7.36.a)

where T()k IKt and A(t) b . That is N6 does indeed generate the

elements of the load vector b. From equations (7.32) and (7.36.a), it Is

clear that the elements of b and H e are generated from N5 and N6.

respectively, at the same rate. The initial delay on the individual output

links may be changed. If we wish. by adding the appropriate number of

latch cells. For example. by adding a cell that delays the sequence in

(7.36.a) by six time units and produces the output on a link labeled Zk,q+4.

we obtain an output sequence that has the same form as the sequences

in (7.32), namely

"= (7kt t7 e2 (.36.b)". ,q +4

5. . . . *S .. -- ... ,,', .. . , ., ,' . .,,.., . . . ., .".'. -' . , .' ' ..
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7.6.2. Realization of step 6 in ALO5.

One can look at step W of ALG5 as a matrix-vector multiplication

b =Y F where the entries of the vector F f G J I=l.--k ) are the

values of the load function at the nodes of e, and Y = i,1. .- -k)

I r is a symmetric matrix. Fortunately, the values of i,/ are available on the

output links Zn,,+. u=0.-, .k-1 of N4. More precisely, from (7.22) we

have
'"'"" ' = 6ulwt e2 0.0

Cu.Oqtl B+ 20 u=.. • .,k-1

00 0.0 00where T(7 1) = k-u and 7 "(t) = yO'OU'

-" This form of the matrix Y enables us to use the matrix-vector multipli-

7.7,- cation array of Section 3.1 to compute the components of the product vec-

tor be = (be i=1," •k) at a rate compatible with that of the generation

of the elements of H

. To summarize the behavior of the integrated system presented in this

chapter, we show In Figure 7.11 a time diagram of the data on all the

input and output links of the global system of Figure 7.2. It represents a

translation of the sequence equations (7.9). (7.24). (7.32). (7.35) and (7.36.b)

for the special case k=q=3. The data items in the input sequences C1 " C2 .

r9.q1+l" P9.qtl" og,q and ?3k 9qtl depend on the finite element that is

being processed and hence must be provided from outside the system. On

the other hand, the data in plg" g=1,. .q do not depend on a particular

. finite element and thus are provided from a memory local to the system.

O Note that we assumed that the network of Section 6.6.1 is used for the

generation of the elemental load vectors.

In general, the time for completing the computations for one finite ele-

, '..ment is 9k+q+10 time units. In the next section, we will show that the

computation for different finite elements can be pipelined through the system

:: ~i~.-.... . .......... . . . .C"::.:" ": "-" " :" '" : ',':: - - : :, -. "": :: ':::::::::::::::: :
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A 7o., .; • •

54;

3 3• " 
3 '"

!'a.

a a ...
m

47,,

33• 
4-3 .. •

:3 , • 4. . • o"

, - • • H,

Is$3$ 
aa 34 *

,33, i. -

* ' T L ': ," 5"'X

, A A, " 1(' -'.

i," \-7.'r, L 1~ •~5L Z :3 : "-All
5l N7 :) -! c-'awl

7 V16) ~1? CL,~* .
.% I £5& L oil

3 A'L r-,Ls.

V. L- ... 461. ...
, ,x .. .. 7 ' ,. , L . 0.,. , .*. . ,, , , . ,

Figure 7.11 - Input and output sequences for k=q=3. ]]
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and that the elemental arrays can be generated at a rate of one stiffness

matrix/load vector every 3k time units.

7.7. Verification of PIpefined Operation.

From the previous description of the subnetworks N1 through N6. it

* should be easy to check that all computations are inert in the sense

defined in Section 5.4, and hence that the m computations corresponding to

% -the m finite elements can always be pipelined through the subnetworks.

Moreover. the techniques of that section may be used to prove that we can

. achieve the maximum pipeline efficiency by taking the pipe separation r=3k.

which is the maximum span involved in the computation corresponding to

Ai one finite element.

The proof procedure is basically the same for the six subnetworks.

hence. we will only demonstrate Its application to one subnetwork, namely

U N4. Recall that in Section 7.4 the network I/O description of N4 was found

to be given by equation (7.20), which is
q

. i +1 gl i -g In 99,g A P9,g) i=9,. .3kt8 (7.37)

Moreover, when the Inputs for a certain Instance Ce of the computation are

e77 .gfl 3k 5Vg g =1. - • •.q (7.38.a)
0 e g t3k t-8

P9g Vg g1, • .q (7.38.b)

,- then the outputs are given by ,

; ~e = .21 3kt1q-9 e .n 7.Il.3 .1k ie=9.. • -. 3k t8 (7.38.c
i ' t

where the detailed forms of the sequences v and V containing the input
g g

data for C , and the sequences 71, containing the results of C are spec-

fled by (7.16) and (7.22), respectively. For the following discussion, we do

not need these detailed forms. It suffices to know that T(v T( =3k9 g
i-

- . . . . , -*:. .- . . ....-, ,.%. . .. . 1. *. . .. . -_. ._
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and T(?7.) = 3k-(i-9), and hence that the minimum pipe separation is rm =

3k.

It the computations for the different elements are pipellned through N4

with a separation of 3k. then the inputs should r;ave the form

'7 = ng t3k+8 p3k ( ) = tu 3k,8 p3k .- (gt3kt8) e -
9.g •=1,m g 0=1.m 9.g

and

= tg+3 k +8 3k rg +3k+8 P3k -(g+3k+8) e
Pg ne=1.m (V9 e=1.m ( n P9 g .-

where we followed the notation developed in Section 5.4. Using this in the

network I/O description (7.37). we get the pipeline outputs in the form

q - E nI-B+q-g /n -9 g+3k +8 P 3k n-(gt3k+8) Ire
=,q+1 E *=1.m 9,g

.g +3k +8 p3k (g+3k +8)
.'3k+' 1.m P9g) ]

Now, by properties P1 and P8 in the Appendix we obtain

K " = lli+3k+q p3k U -(i+3k+q) q fi-8+q-g~ny-9 ffe )
iq e=1'm 9" 99.. , g=l -

which by (7.37) and (7.38.c) reduces to

0 i 3 6 p J 7 ) (7.39)

= k;' 3 :.-i'qtl e=1.m

Finally, because of T(1) i-9+T(77i) = k, we use P8 to write

(7.39) as

1= 2+3k +q-9 3k eJ;:;.; el,q 1elo

which proves that the sets of results (77.; 1=9,.. .3k+8) of the different

instances e=1.*. .,m will be correctly produced at the rate of if the set

of inputs ( .. g=L, .,q) are pumped through N4 at the same rate.
g 9

Similarly, we can prove that the other subnetworks can operate suc-

cessfully at maximum pipeline efficiency. Given that the output of the com-

putations associated with a specific element e is described by (7.32) and

..*

- .o
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(7.36.b), it is then easy to verify that the results of pipelining the computa-

tions associated with the m elements, e =1.- - .,m, is described by

.. 1.6u w 7 p3k e 2 _
Cu.qt4 e=l.m ( E) )  (7.40)

where Is as described in (7.32) and (7.36.b) with the superscript e used

* to designate the results of the computations associated with the element e.

* Clearly, (7.40) shows that the system may compute all the elemental arrays

'* .. in a time equal to t 3kn(m-1, where tc=9ktqtlO is the time consumed by

the first instance of the computation, that is the time for the generation of

1 1
H and .

* Remark 1:

A careful examination of the system presented in this chapter shows

-- that the time of the computation of the m elemental matrices and m ele-

mental vectors may be reduced to t c (2ktl)(m-1) for some special prob-C

lems in which the coefficients arI are equal to zero for r=0 or 1=0.

." Examples of this important class of problems are the heat flow, the plain

strain and plain stress problems [571. To obtain this time reduction. some

control parameters have to be changed as well as the forms of the input

• - sequences. At this point we note that with the technique of Section 5.4. it

can be proved that a successful pipelining of the operation on the modified

network requires a pipe separation r equal to 2k+1. This Is larger than the

minimum pipe separation "rm=2k for the computation, which means that the

"" "modified network cannot operate at maximum pipeline efficiency.

. rRemark 2:

"~ it may be sometimes desirable to slow down the rate at which the out-

put is generated. More specifically, we may require that the output
s .f
sequences have mhe forms

-- , *=-% * ~ * *
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,4c(2utk)tqtl6 c-i u "O
' u =0,e • =0 ,

for some Integer c >3. rather than c=3 in the formulas (7.32) and (7.36.b).

This flexibility may be accomplished by allowing for a. modification of the

control parameters in the systolic cells. This is especially applicable if the

cells are controlled by external control signals that propagate systolically In

the network. In this case the form of the input should be changed accord-

ingly and the separation during pipelined operation should be set to ck.

We will not consider here the equations that describe the operation of the

modified network In any detail.

-. Remark 3:

In the case of d>1 degrees of freedom per node, (see Remark 1 in

Chapter P). the input coefficients a in ALG5 are dxd matrices and ther,I
* 2entries H . are dXd submatrices. In order to compute the d elements Gf

H~e
H without slowing down the system, we may replace the subnetwork N5
i,

by d2 Identical subnetworks, each of which generates the corresponding

entry in the submatrix H when provided with the appropriate entry in the

dxd matrices arI rdI=O,1,2. Similarly, d Identical copies of the subnet-

work N6 are needed for the simultaneous computation of the d components

of the subvector b.

% "..-. . .-.

S * - -. -
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8. THE ASSEMBLY STAGE.

The elemental arrays H and b generated by the systolic system of

the last chapter are the main contributors to the global stiffness matrix H

' , and load vector b. The assembly of the contribution of a specific finite
.a-.

-. element e to the global arrays begins with the modification of He and be.

" if necessary, to account for the boundary conditions. The elements of the

modified arrays Re and 9' . e=,--, -,m are then appropriately scaled and

assembled according to the formulas (6.8/10). In order to scale the arrays

of a specific element e. we need to know the global labels of the nodes

(ei), i1,-, -k belonging to that element. Given the local/global mapping.

the assembly of Re and SE. e=1 ,'.m may be described by the following
'-.

ft algorithm:

ALG6

1) Initialize the global matrix H and the global vector b to zero.

C. 2) FOR e=1 TO m DO

2.1) FOR 1=1 TO k DO

2.1.1) FOR j=1 TO k DO

H (glob (e.i),glob (e,j)) = H (glob (e.i).glob (e.)) t H11I

2.1.2) b(glob(e.i)) = b(glob(e.i) t

In Sections 1 and 2 of this chapter. we deal with the generation of the

global labels and the modification of H and b to satisfy the boundary

conditions. Then in Sections 3 and 4, we discuss the parallel Implementa-

tion of the assembly stage, and finally In Section 5. we show that the

assembly stage may be eliminated If the resulting system of linear equations

,..-."
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(6.7) Is to be solved Iteratively.

It should also be mentioned that Law [34] suggested a systolic archl-

tecture for the assembly of the global matrix H. However, the timing and

form of the Input data required by his architecture are not compatible with -

the output generated by the system discussed in Chapter 7. Moreover. Law

assumes that each cell In the array does perform matrix operations, which

of course requires a larger clock cycle than the one for the simple opera-

a
tions used in the system that generates H For these reasons, we were

not able to use Law's array In our design. This. of course. does not

exclude the possibility of employing his array in other designs of parallel

finite element systems.

8.1. Generation of the global labels.

The purpose of this section is to design a subnetwork that associates

the global labels glob(e.i) and glob(e.j) with each He t generated from N5.

and adjusts the entries of H e that correspond to the nodes at which the

solution function should be zero (see Remark 2 in Chapter 6).

7- Z

5.,~ . z., -.

* Figure 8.1 - The graph for N7

In Figure 8.1. we show the graph of a network N7 that performs these

two tasks. Its input links Zu ~. . u=0.- ..k-1 are to be connected to the

u .q+40'

corresponding outputs of the subnetwork N5 that carry the elements ofh e

as described by equation (7.32). The input links s and r carry

0~ 4Oq+

-'p ~ ~ ~ j a,. . . . . . . . . .
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identical information, namely the global labels of the nodes (e.i). i=1.- .k.

More precisely, we have

a" : w 7 o 3k e2 e,

"0q4 =PO,q+4 m e ' ) 1.a)

where T(y e ) = k and y (t) = glob(et). Finally, the input link p car-

ries a single bit for Identifying the nodes at which the solution should be

zero, that is. the nodes that lie on aQ0 . More precisely, we have

w7 3k 2 a
" O.q +4 e='Im 0

where T (,) = k and

= 1O if node (et aQO

10 otherwise

The operation performed by any of the k cells in the network is very

primitive. First, each cell delays the data on the s. r and p links as fol-

lows

Pu+l.q 4 n Pu q+4

'r) = w u =0. • • • .k - 1
lu 1.q +4 uq +4

77 ut1,q*4 77 u~q+4 u=0.- - -1

This ensures that for each cell u the time of arrival of H e  on the link
t ,t+U

- z coincides with the time of arrival of glob(e.t). glob(e.tfu) and

y 0 W)on the links r au and pu respectively, thus allowing0% . u .q 4' q 4 u,q +4 '

the cell u to modify the elements of H appropriately, and to produce the

modified elements on the output link z The cell also produces on

the output link b the pair (glob(et), glob(e,t u)-glob(et) ). This
u,q +5

pair specifies the location at which H Is to be accumulated. assuming.... .-. ./

that the global matrix H is stored as a band matrix. In terms of sequence

equations, this translates into the formulas

,- , .u,q+5 = P1w 8 3k=m (e2 I) u=0. . .k-1 (8.2.a)

.1,..



,-. ..VT

148

6u w+8 p3k 1,11
\. , u.ql5 e=1,m I ,,)) u=O...k-1 (8.2.b)

p/, where Is as in (7.40) except that the entries of H are now approprl-

ately modified. The sequences X' and ) are described by T(, ) = T( " )
U U U U

- k-u and

X (t)= glob (et)

U

X W glob(e.tlu) - glob(e.t)

Finally, we note that a cell (k.q+4) may be added to N7 to modify the

elements of be and associate with each b the global label glob(e.l).

8.2. Essential boundary conditions.

The essential boundary conditions are the ones responsible for the

terms containing line Integrals In the variational formulation (6.1/3). It was
shown that in the finite element approximation, the effect of these terms

may be isolated in the form of a matrix S and a vector a6 that are to be

-"' added to the elemental arrays H and be . respectively. However, for a

given problem, most of the arrays S and s are zero arrays, and if non

zero, they contain only few non zero entries. Consequently. adding special

hardware for the computation of the few non zero entries of S and s.

, e=1. • -.m Is not justified from a practical point of view, especially since

the general formula for the generation of these entries Is complicated and

',. ... contains many coefficients that are set to zero for particular problems.

More appropriately, these few non zero entries should be computed by

the general purpose machine that controls the entire computation as a part

of the presetting procedure, and then added to the corresponding entries of

H and be . In order to ensure the continuity of the flow of data. the
e.

--:. additon should take place in an intermediate sub-system residing between

.!o4.

•.". , --.- ,-5 ' ' ,. w.. .54 °" "" "" " " " "" ' " "* " '-" "" "" "" '" "'. " """ "" '"" """."'"
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the system that generates H and b. and the one that assembles the glo-

bal arrays H and b. Conceptually, the intermediate sub-system should

contain a memory to store the non zero entries of S and a and some

. logic to add every non zero entry to the corresponding entry in H or b

at the time of Its generation from the subnetwork N7. As we did In the

last section, we will only consider the stiffness matrices and suggest a pos-

sible implementation for the addition Re = He+S e . The extension to the

load vector E'should be obvious and simple.

'- " ' The systolic nature of the subnetworks Ni. ... N7 enables us to

time exactly the data on the output links zuq 5. u=0.- .. k-1 (see equa-

tions (8.2)). Each of these links may be directed into a systolic processor

P O4uk-1 that has access to a local memory Mu as shown in Figure

8.2(a). Each processor P contains a register 'CURRENT-u' that it sets to
U

_ Lone at time 6u+w+8. and increments every 3k time units. Hence, when an

. . -. element He  14tk-u appears on an input link Zuq+5 the correspond-
-, t.ttu " "

ing register CURRENTu in P should contain the label e of the finite ele-
U

ment being processed.

Z

.- 1,a

(a) The general architecture (b) The content of M

Figure 8.2 - The assembly stage

.- %
-.- .*-.,. %.. . .

i
I

, . - . j. . . . i. .2 .~ . . i... . . . A . . . . . . I . . . . -a--
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Each local memory M Ou(k-1 contains an array INDEX (see Figure

8.2(b)) that has one entry for each finite element e.l,-" .m. if the matrix

.e corresponding to the finite element e Is zero, then INDEX(e)=0. On the

" other hand, If So 0. then INDEX(e) contains a pointer to another array

'BT_u' (Boundary Terms for off-diagonal u) where the entries Se
"_, , t ,t U "

the, t=l,-.k-u of the u off-diagonal of S are stored (including zeroes) in

the specified order. This order is the same as the one in which the ele-

ments H e  14tk-u appear on.. t~tru" pero Zuq 5 .

Thus, at times 6u+w+8 3(e-1)k. e=1, • -,m, after the processor Pu has
-. 4

changed the value of CURRENTu, It consults INDEX(CURRENT-u). If it is a

zero, then, for the next 3k time units, the data items on the input link

z," uq+5 are placed unchanged on the output link zu q 6. Otherwise. P U

retrieves from BTu the elements S =,.. ,k-u. one every three time

units. adds each of them to the corresponding H and puts the resultt ,t +u -

on z

An alternative architecture could be obtained by replacing each M u with

an associative memory that uses the labels 14e 4m as keys to store the

array BT-u. or by using only one global memory M instead of the k
* %

memories M u , u=0,.. ",k-1. In all of the above cases. the content of the

memory is computed and preloaded by the host computer. A completely

different approach would be to perform the matrix addition He +S on a

systolic network that does not have any memory. However, matrix addition

is a communication-bound rather than a compute-bound operation, and in

our case. most of the data in Se are trivial (zeroes). Consequently. such

a memoryless subnetwork would require many unnecessary data communica-

tion. which we tried to avoid in our design.

",,

"°. .

'-a-.'' -. '-',, -. -. ''' .''' .''' . ''..4.". ;- " -':a '.b-.".-."- '. .".'-', .., *".=.''' -. " ''. '' ." " " - -" " """* . -
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8.3. The frontal principle.

The assembly stage in the finite element analysis is an example of a

simple computation that is irregular, and hence, does not lend itself to a

simple systolic implementation. In Section 8.5. we will show that the

assembly stage may be eliminated from the analysis if an iterative scheme

is used for the solution of the resulting system of equations Hu=b. How-

ever, if a direct solver is to be used, then the global arrays H and b must

be assembled in order to proceed with the direct solution. In what follows.

we will only consider the assembly of the stiffness matrix H. Although we

will not discuss the assembly of the load vector b. we note that It may be

included here by considering b as an additional column of H.

At first glance. it would appear that the solution of Hu=b may not start

before the assembly of H is completed. Especially in a parallel system.

this would have two disadvantages; firstly, It does not allow the computation

of the different components of the system to proceed in parallel, and

secondly, it requires some intermediate storage to store H. Since. in prac-

tice. finite element problems with n in the order of several thousands are

not uncommon. it is obvious that auxiliary storage (disks) may be needed

for H, thus slowing down the system even more.

Fortunately. we do not have to wait until H is completely assembled

and we may start the solution process as soon as some rows of H are

assembled. The assembly and the solution processes may then proceed In

parallel in a producer/consumer type of Interaction: The assembler process

being the producer of the assembled rows of H. and the solution process

being the consumer of these rows.

* in order to explain this assembly technique, we denote by h e the/

.. ' " row of the elemental matrix and by h i the i row of the global matrix

i. . : ., . .. .. ... , % i\ . . .. .. ,,,,,. ,'~.. , ~ ... ., . ~. ,.- . , .• . ,,- ,, ... . . - . . - -
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H. We also note that a node with a global number i may share more

than one finite element. and hence, may have more than one local label.

Each row h 1 1414n, of the matrix H corresponds to a certain node in

the finite element mesh, namely node i. This row is assembled by accu-

mulating contributions from the rows hl I hi where e1.- er are

the elements that share node i. and (el./1). ".(er.jr) are the correspond-

4. ing local labels of node i.

In accordance with the system of Chapter 7. we will assume from now

on that during the assembly process the elemental matrices are processed

In the order H .. H. and the rows within each elemental matrix are

considered in the order .-. . The elements in each row h, are

accumulated in the proper position of the global matrix H (see ALG6). or

.. more precisely in row hi of H. where i=glob (e.). N4

Before going further, we introduce some terminology. During the

assembly process, a row h. is said to be active from the moment of the

.'r. appearance of a row h with glob(e.I)=i. that is from the time when Its
assembly actually starts. On the other hand. h is called a ready row

Immediately after the accumulation of the last row with glob(r.1)=l. that

Is after its assembly has been completed. In other words, a certain row of

H is partially accumulated in the period between the instance It becomes

active until the instant it becomes ready. Once it has become ready. a

row may be processed by the solver.

These ideas were first formulated in the framework of the so called

frontal technique (24] used in sequential finite element systems. The goal

is to interleave the assembly and the solution phases in order to minimize

the high-speed storage requirements. The order in which the rows of H

r ','.' . . .
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" ,become ready is usually determined by a preprocessing step.

p iThe same basic idea will be used in our system to achieve our goal

of allowing the assembly and the solution processes to be executed In

parallel. More specifically, whenever a row In H becomes ready, it will be

passed to the solution process. This also allows for the reduction of

storage for the assembly since the storage allocated for a row may be

released whenever this row is passed to the solution process (consumed).

However, in all the known parallel schemes for the direct solution of

" Hu=b. the rows of H have to be processed in a sequential order, and

hence, the size of the storage required by the assembly stage is deter-

mined by the maximum number of rows that are at any one time either

active or ready but not yet passed to the solver (consumed) because a

preceding row is not yet ready. For this reason. the global labels given to

the nodes in the finite element mesh should be such that the rows of H
ml.

become ready in an almost sequential order. By this we mean that there

should exist a relatively small constant c such that for any I and I satisfy-

ing 14i*'n and <itc, row j does not become ready before row I. With

this restriction, we can restore the sequential order by using a buffer large

enough to store up to c rows of H.

If a band storage mode is used for storing the rows of the banded

matrix H, then it is also advantageous to minimize the bandwidth of H. In

this connection, it has to be noted that the bandwidth of H is determined

by the global numbering of the nodes in the corresponding finite element

mesh. in fact, given a global numbering and denoting by 2B+1 the

. bandwidth of the matrix H resulting from this numbering, it is easy to show

'..

o* .. . ._

- . .. at

L-0

,-. .-;B = max/ -/ ;e =1,..., ) (8.3)
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where and .Le are the largest and smallest global node numbers In the

finite element e. respectively.

Many heuristic node numbering algorithms were suggested for reducing

the bandwidth (e.g. (13] ). However, if the assembly and the solution

processes are to be executed in parallel, then we need a numbering

scheme that. In addition to reducing the bandwidth, has the goal of reduc-
ing the number of active rows of H at a given time, and of producing the

assembled rows of H in an almost sequential order. The following algo-

rithm takes these goals into consideration.

ALG7

1) Assign a unique label e. 14~e Cm to each of the m finite elements.

2) Number the nodes sequentially In the following order

2.1) Number, in arbitrary order. the nodes of element 1.

2.2) FOR e=2..., .m DO

2.2.1) Number, in arbitrary order. the nodes in elements e that

are not yet numbered.

ALG7 does not specify the method of labeling the elements e=1, .,m.

If the element labels satisfy the property that for any e. 1 e m, element e

contains at least one node that does not belong to any element 1,''-,e-1.

then we call such a labeling scheme a proper element labeling. For

example, the element labeling In Figure 8.3(a) does satisfy the above condi-

tions, and hence Is a proper labeling. On the other hand, the labeling for

O the same mesh in Figure 8.3(b) Is not proper because element 10 does not

contain any node which is not in the elements 1. .9. With this deflni-

tion, we can prove the following proposition:

Proposition 8.1: If the nodes of the finite element mesh are numbered using

ALG7 and the labeling in step 1 is a proper element labeling, then for any

. ..

*"

,.. .-. .p.. ..- *... . ,- ... , ... . -. .... . . •. . . .. . .. ., . U ,, . . .,,
U~. I
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I-l

.

-p 4

(a) A proper labeling (b) A non proper labeling

Figure 8.3 - Elements labeling.

e, 1<e~m, the elements e... ,m do not contain a node with a global

number smaller than r - B. where r is the largest node number in ele-

ment e. and 28t1 is the bandwidth of the matrix resulting from this partic-

ular node numbering.

Proot. ALG7 and the proper element labeling Imply that for any r>e, the

,' .-. finite element r should contain a node with a label > 7.However, from

equation (8.3) we find that Ir  I .Lr  
r -B > i-. Hence.

because the label of any node in element r is larger than .L we conclude

that the elements e l. .,m do not contain a node with a global label

smaller than or equal to 1 -B. Now, the result of the proposition follows

from the fact that any node In element e has a label larger than or equal
0--.

'r to.C , toL l ?-BE

In our system, we will assume that the global node numbering scheme

satisfies the conditions stated in Proposition 8.1, and that the finite elements

are processed in the order 1. • .,m. Then. the proposition guarantees that

during the assembly of the contributions of an elemental matrix Into the

. 5 .-- C . . CC S.:
.%CC" •

*.;. -- : . -. ? . .i.: -%, , ., . . .:. -. , .:'. . .- . .. ' .. ' -.. . - - '....C .. C, 
'. . . . ,,C-..*,-----,", , .. ,- _ . . :. ._ .. ,', . ,. . .' , .- , .
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global matrix H. the rows 1. .I -B-1 of H are completely assembled and

will not be modified by any contribution from the elemental arrays -r. r>e.

In other words, if row i. 1<14n in H Is active, then the rows up to i-

(B I) are ready and may be processed by the solver and thus the storage

associated with them may be released.

Definition: if. at a specific time during the assembly of H. a certain row i.

14/i4n is active, then the rows 1.- .i-(B+1) are called Bready rows of H.

From Proposition 8.1. it follows that B.ready rows are ready rows of H.

However. a given row may be ready before it becomes Bready. Being

pessimistic, we will follow the rule of not allowing the solution process to

access a certain row In H before that row becomes Bready. except of

course for the last rows n -B... .n that may be accessed only after the

assembly of H is completed. This may decrease somewhat the efficiency.

but it has the advantage of eliminating the preprocessing stage that would

otherwise be required for determining the time at which a certain row in H

becomes ready.

If the above rule is used as the basis for the interaction between the

assembler and the solution processes, then, the assembler process should

contain storage for holding at least B I active rows of H. Moreover, as In

the case of any producer/consumer problem, additional buffers may be

required depending on the relative speeds of production of the B-ready

rows and their consumption.

* It is not hard to see that. due to the nature of the assembly process.

-- the rate at which the rows of H become B.ready is not constant, Hence

we will consider the average of that rate. This average rate differs from

* . one problem to the other. In order to be more specific, we first note that

the inputs to the assembly stage are the mk rows /. =1. " - -. k.

-, ,- ~~~~~~~~~~....- .......-..-... •........-. .. .. .. .,... .. .....-. ... .. ...........-. . ...-' -,- .- ---. , ' " - , " ", ,, -" ," , .- -- .- ---... .,-- .- - -- -- * "-* , a .ia --
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e=1. • .m. and that the outputs from that stage are the n rows h,.

" =1,,. ,n. We also assume that the execution time of the assembly pro-

cess is T time units and that its data bandwidths are sufficient to transmit

the input of one row h as well as the output one B-ready row at a time.

With this, we suppose that the rate of arrival of the rows at the assembly

mkstage is constant, and we denote this rate by ri= a- rows/time unit. We
Ta

also define the average rate at which the assembly stage produces the

- n nB-ready rows of H as = I k r. Since the ratio -L changes from
Sa m

one problem to another, it should be clear that, for a fixed input rate. the

-. -- average rate, at which the rows of H become Bready. does depend on the

problem at hand.

Hence. in general, we cannot achieve the desired match between the

average rate of production of the B-ready rows and the rate at which the

-3 solution process is ready to consume these rows. More specifically, if the

. . solution process is capable of processing (consuming) r rows of H every

time unit, then we have one of the following possibilities:

,1)rP that Is the solver cannot consume the B-ready rows of H

fast enough. In this case, the number of Bready but unconsumed

rows grows continuously and so does the size of the memory require-

ment of the assembler process.

2) r r. in which case the assembly stage needs only to provide
C P

storage for B+I+K b rows of H. where Kb is the size of the storage

needed to buffer the fluctuations in the production rate of the

B_ready rows of H.

From the above discussion, it is clear that to limit the size of the
0. t'

storage required In the assembly process. we need to guarantee that r >r
C P

V A-'-"L . ". . .- . . .".. -.. . ,. '" . . *." . . '"- ." • ,, -" "' "'.", ". - ,,., ,' * , ' ' , .< \ ,,.,..,,, ' ,, ., ', ' - -.. .. -" -
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This. however, will force the solution process to execute at a speed slower

than its nominal speed rc . because often it will be forced to stop execution

and wait for the B_ready rows of H to become available. As a result, the

synchronization between the solution and the assembly processes can no ".

longer be controlled by a global clock. Instead, a shake hand protocol

should be used for that purpose (see Section 5.5).

Assuming that r >rp, we may control the size of the additional buffer

KC
Kb by controlling the fluctuation in the rate 7p of production of the

B_ready rows. More specifically, if we can guarantee that, at any time t

during the assembly process, the rate r (t) of production of the B_ready

rows, Is smaller than or equal to the consumption rate r . then. any row ofc l

H will be consumed as soon as it becomes B-ready, thus reducing the

size of the additional buffer Kb to zero.

Here, we note that the rate r is uniquely specified by the solution

process, and hence that the relation between r and r (t) cannot be
c p

obtained by studying solely the assembly process. However, by specifying in

ALG7. a certain order for numbering the nodes within each element, rather

than keeping this order arbitrary, we can prove that r (t) may not . at anyP

time t, exceed the constant rate ri of arrival of the rows at the assembly

stage. This result will be used in Section 9.1. We start by modifying

ALG7 to obtain the following node numbering algorithm.

ALG8

Given a proper element labeling for the finite elements and a

corresponding local numbering of the nodes, obtain the global numoering

by giving the nodes sequential numbers i=l., • ..n in the following

order:

1) FOR =1,-.. ,k DO

. . ,.. - ° .. %-.-. ,
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glob (.)=1

i 2) FOR e=2,.. .,m DO

FOR /=1, .k DO

IF node (9.) is already numbered THEN skip

ELSE increase i by one and set glob(e.)=i.

Now, we can prove the following result:

Proposition 8.2: Let the nodes in the finite element mesh be numbered by

algorithm ALG8 and let the elemental arrays be accumulated In the global

".:'i" ra nteodr/1 .~ .,.

array in the order . .H with the rows within each H being accumu-

lated in the order h11 h'%. Then, the rows of H become active in a

purely sequential order.

Proof: Consider any two rows h and h of H with i1<12, and let (el1.i)

be the local label for node i such that glob (e . 1)=i 1. and that we have

e 1'>e 1 for any other local label (e '.j1') with glob (e 1'./1')=i 1. In other

words, element el is the first element containing node /1. Similarly. let

(e2.j2) be the local label of 12 with respect to the first element containing

it. From the definition of active rows, we know that the rows h/1 and hIl i2

eoI -e 2
of H become active when rows h and h are received by the assem-

-" bier, respectively. However, ALG8 and the fact that i1<12 . together imply

that either el<e2 or e1=e2 and 11<i2. In both cases. we conclude from

the hypothesis of the proposition that is received by the assembler

.-e2
before h1 2 , and hence that row /1 becomes active before row i 2. U

Proposition 8.3: Assume that the hypotheses of Proposition 8.2 apply. and.

moreover, that the rate r at which the rows h. i =1.. • .. k. e=1. • - ..m.

arrive at the assembly stage is constant. Then the rate of production of the

.r., .r B.ready rows r t) at any time t. cannot exceed r. rows/time unit.
. . .....

a., ,. ,. ,* '-*" " , .' . '' . ,.' .. ' . : , *, .''* . '""" . ' -" ,. . ' , , ' ' " ',' , ' - ' 1 " .- , - . - "
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Proot Note here that the arrival of a certain row '. l(1 l1e(m, at

the assembler may at most activate one row of H. namely the row labeled

=glob (ei). Hence, after the arrival of h, the rows h1 ,...,h are.
itatl

by definition. B.ready rows. However, from Proposition 8.2, we know that

row hi_ 1 should already be active at the instant when row h. becomes

-. active. That is, before the arrival of . rows h. . .h were B.ready.

In other words, the arrival of h may create at most one Bready row.

namely row h a1

We now return to algorithms ALG7 and ALG8. Although these algo-

rithms provide good numbering schemes from the point of view of process-

Ing the assembly and solution processes in parallel, we still have to ensure

that they do not result In a large value of B. For this we note that ALG7

-. and ALG8 are two-step algorithms; First, the finite elements e =1. . .m are

labeled, and then the nodes within the elements are numbered. To our

knowledge, Fenves and Law [151 were the first to suggest a two-step

numbering algorithm. They reported experimental results which show that If

the Cuthill-McKee (13] algorithm is used to number the finite elements with

a two step algorithm, then the bandwidth of the resulting matrix H is com-

parable with the one resulting from the best known heuristic algorithm for

minimizing the bandwidth. Here. in the application of the Cuthill-McKee

-. algorithm for labeling the elements. Fenves and Law consider two elements

to be neighbors if they share a common boundary.
.-

Clearly, tne hypothesis in Proposition 8.1. requiring the element labeling

scheme in ALG7 to be proper, is essential. In order to see this. consider

tne simple example of Figure 8.4(a) where the element labeling is not

proper (element 3 does not contain a node not In elements 1 or 2).

.,.-.

: -',.-.,... •............. ..... ......... ". "...- . ..-
, . " ' ,' ,,. . . % , '. - -. .,'. . ' , ,* ,, ,• . ,. " . .- . . . . .. , % . , . .. ,.. ,. ., .. .. - , . ,

. ' , ,, - . , 1
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Using ALG7 to label the nodes as in the figure, it Is easy to see that the

result of Proposition 8.1 does not hold because element 3 contains nodes

with global numbers less than I -B =8-3=5. namely nodes 3 and 4.

696

3 5 7o00 :®,
,7 9

43

01 7

(a) B=3 (b) B=8

Figure 8.4 - Application of ALG7 for node numbering.

According to the results in [15). we may obtain a relatively small

bandwidth with a two step node numbering algorithm If we use the Cuthill-

McKee scheme to number the elements. However. we note that this may

result in a non proper element labeling scheme. For example. the ele-
'°%

ments in Figure 8.3(b) were labeled using the Cuthill-McKee algorithm but

the resulting labeling is not proper (because of element 10). The

corresponding node numbering is shown in Figure 8.4(b), where the largest

node number in element 9 is 1 =20. but element 10 contains a node with a

number smaller than 1 -B=12. namely node 9. In this case, however, a

proper element labeling may be obtained by starting the Cuthill-McKee algo-

rithm from a different element (see e.g. Figure 8.3(a)). We examined many

strange shapes of meshes and In only rare cases did the application of the

Cuthill-McKee algorithm result In a non proper labeling. Moreover, in all

these rare cases a proper labeling was easily obtained by changing the

starting element. The existence and construction of a proper element

o° o." , - q. . . . 5.' ,€ .& & °, - . .. . . . . .
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labeling scheme for a given finite element mesh is still a question that

needs to be answered.

Finally, we note that, by allowing the solution process to access the

rows of H only when they become Bready. we do not increase the storage

requirement of the assembly process. As an Implication of Propositions 8.1

and 8.3. this storage should be large enough to hold Bt1 rows of H.

However, this is the minimum amount of storage that should be provided by

the assembler even if the rows of H were accessed as soon as they

become ready. In fact, there always exist an element e such that 7e-l=8,

and hence the assembly of this element does require the storage of 8.1

rows of H. assuming of course, that the rows of H are stored in consecu-

tive locations.

8.4. A parallel Implementation of the assembly process.

The discussion of the last section showed that the potential parallelism

between the assembly and the solution processes may be paralyzed If the

solution process is designed to access the rows of the assembled matrix H

in order and the node numbering scheme does not take this into con-

sideration. Here, we prevent this from happening by assuming that the

V -node numbers satisfy the conditions of Propositions 8.1 and 8.3.

Next, we modify the definitions of and h such that =

e j '=i, .. k) and h, = (H iJ=i,... i-B) are the sets of elements of, .1I I

Interest In the i rows of the symmetric matrices and H. respectively.

In addition, we denote by L. = ((glob(e,i).glob(ej)); i=i,.. .,k) the set

that contains the information about the position at which each element of

hO 0-. is to be assembled Into the global matrix H. With this. we may

°-°
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,. ~-describe the assembler process as follows

PROCESS "ASSEMBLER'

Max-ready := 0 ; Consumed := 0 ; HO 0

interrupt I: /w High priority /I

1) Get and L from Iport

2) Accumulate the elements of h in HO

3) IF (Maxready < glob(e.i)-B-1) THEN Max.ready glob(e,l)-B-1

4) EXIT from the interrupt.

Interrupt 0: / Low priority "/

1) WAIT until (Max_ready > Consumed) OR (Dflag is set)

2) Send hc. c := Consumed to O.port

3) IF (Consumed = n) THEN STOP the ASSEMBLER process

4) Consumed := Consumed + I

5) EXIT from the interrupt.

Here, the following notes are in order:

1 a) The interrupt I takes place when a new input arrives at I-port. The

,.. data bandwidth of I-port is assumed to be large enough to input the sets

':he and L.e . 1<'e~m 1(iQk.
'--"I I"

- b) The Interrupt 0 has a lower priority than the interrupt I and it takes

- "place when Oport is ready to receive the next output. The data bandwidth

of Oport Is assumed to be large enough to output a set hi ,. 1 <i n.

c) The flag D-flag is set externally when the input of all the elemental

matrices is completed.

it Is straightforward to verify, on the basis of Proposition 8.1. that the

* .. * above process will output the rows of H to O-port only when they are
eh.I.'.-.'.completely assembled. If. moreover, the solution process is able to

. - 3- :'
• .o
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consume the rows of H at a rate faster than they can be provided at

O-0.Oport. then we do not need to provide storage for the n rows of H, and

it will be enough to provide a circular buffer to store B+l+Kb rows of H.

where the need for the additional buffer Kb was discussed In Section 8.3.

The process 'ASSEMBLER' is assumed to handle a large amount of

data at a high rate due to the large Input and output data bandwidths.

Consequently. we may need more than one processor to execute this pro-

cess. Fortunately. the 'ASSEMBLER' may be easily decomposed into a

number of parallel sub-processes. each responsible for managing the data

on one or more off-diagonals of the matrix H.

-.-- . -

............. '., ,.O•pNd',

Figure 8.5 - A parallel architecture for the assembler

Consider. for example, the extreme case where we have BtI sub-

processes 'ASSEMBLER-w'. w=0.. . .. B running on B+1 processor/memory

units (see Figure 8.5). Here 'ASSEMBLER-w' manages the assembly of the

thw off-diagonal of H. The communication network in Figure 8.5 distributes

the elements of h such that each element R. Is sent to the P/M unit

responsible for its accumulation. More precisely, the communication network

receives with each element Hi, the global/local map Information v=glob(ei)

,- ' .. . . .. . .• . . . . .. . .. .. . . . .-. .. . . . . , . .- . . . ... .. . -,.. .. ,. . . , ,.. ., -, ,. -,j -, ., .,g , . .
9 -,;, :. '. .. *' '' .:, , " , '.',*, , .. . , .. ' . .' . . ., . .. . '. , . . , ,, , . ,, , . , . , , , . - , , .



p... -. ...

165

and w=AaS(glob(e./)-glob(e J)), (ABS= absolute value), which specifies that

H is to be accumulated in the wth off-diagonal position of row v of H.

With the value of w. the network then sends both H,,i and v to PIM

which completes the accumulation.

One difficulty arises from this decomposition of 'ASSEMBLER'. namely

that upon receipt of a certain row h/. the entries of this row will be distri-

buted on the few P/M's that are responsible for their accumulation. Hence,

only these few P/M's will detect the arrival of and update accordingly

their copy of the variable 'Max.ready'. The copies of Maxready in the

other P/M's will not be updated unless we provide for some sort of inter-

process communication. Since P/M 0 receives the diagonal element of every

row h/ arriving at the assembler, it seems natural to have only P/M 0

update Its value of Max_ready, and then send a message to the other

P/M's with the new value of Max_ready. whenever It is updated. This mes-

", "sage may be broadcast to the other processors or passed from one pro-

cessor to the next (a daisy chain). With this observation, we may describe

the process In any processor/memory unit PIM as followsw

Sub-process ASSEMBLER-w

Max_ready := 0 Consumed 0 diag-wO := 0

Interrupt I: /* High priority =/

... 1) Get Hi, and v=glob(edi) from I-portw

2) diagw(v) := diag.w(v) + H.1

3) FOR P/M 0 ONLY IF (Maxready < v-B-1) THEN

3.1) Maxready v-B-1

*3.2) Send messages to the other P/M's with the new value of

. 'Maxready
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T, 4) EXIT from the interrupt

Interrupt 0: /0 Low priority I/

1) WAIT until (Maxready > Consume) OR (D_flag is set)

2) Send diag-w(Consumed) to O...port•

3) IF (Consumed = n) then STOP the ASSEMBLER-w process.

4) Consumed := Consumed + 1

5) EXIT the interrupt •

Interrupt M: /- High priority /
Update the local copy of Max.ready as received from PIM

0'

here the high priority interrupt M takes place only in P/M ..... P/M when

a message is received from P/M O  Similar to the process ASSEMBLER. the

linear array diagwO may be replaced by a circular buffer of length

Btl.K b . Note that the message-passing communication technique may be

replaced by a global shared variable, or by letting every P/M receive an

indication that a row h has been received.

, Finally, we note that the communication network of Figure 8.5 may be

implemented as a binary tree network [22] where the nodes at consecutive....-.

levels use the corresponding bits of the address w to send -. and v to

either its left or right successor node, with I-port . w=O.... .B placed atw

the leaves of the tree. We do not intend to discuss here the communica-

tion network in any details.

-*. 8.5. Elimination of the assembly stage.

To our knowledge, Belytschko and al. [31 were the first to notice that

the multiplication of the global matrix H by a vector p can be completed

without assembling H. More precisely, from equation (6.8) we have

% . % , .°.. •
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m",--"
H" p E MeT H. M p

.M H p

where p = M p is a k-dimensional vector containing those entries in p

that correspond to the nodes belonging to the finite element e. that is.

p (I) = p(glob(e./)). for I=.1-.
-*' ,%,

The following algorithm describes precisely the use of the unassembled

matrices H @=I,. .m in the computation of the product vector

y = x t H p. where x and p are given n-dimensional vectors.

ALG9

1) FOR i=1, . ".n DO

.- , 1.11 yWl = xWi

2) FOR e=1.-- .m DO

2.1) form the vector pe from

G
p (i) = p(glob(e,/)) i=1.- • ' ,k

2.2) Obtain the k-dimensional vector product

... ye =H pe
G0 ,,

2.3) Accumulate y into y according to

y(glob(ej)) = y(glob(e.j)) t ye (I) 1=." .k

The above algorithm is very useful if an iterative solver is to be used

for solving the linear system of equations H u = b resulting from the finite

element approximation. In fact. as noted before, most iterative solvers

involve the matrix H only for the computation of its product with some given

- "vectors and this can be done without assembling the global matrix H.

*Clearly. ALG9 Is especially suitable for our systolic system where the gen-

.. ; eration of the matrices H- is pipelined for a=1. .. ,m. and hence allows

% L
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. also for pipelinig the formation of the partial products ye

it is widely accepted in parallel processing that one may replicate some

parts of the computation or apply an algorithm that may not be efficient for

sequential processing. provided that the gain obtained from parallelism justi-

ties the added cost. This may be the case in the computation of the pro-

"N'> duct vector y = Hp. where the direct computation does require less work

than the application of ALG9. Also It seems obvious that the amount of

storage required to store the matrix H Is less than that required for storing

all of the elemental matrices Re . e=1....m. In order to justify the appli-

cation of ALG9, we will compare the storage requirement for storing H with

that of storing all the He. e=l....m. and the work required to compute Hp

directly rather than by ALG9.

a) k=4 o, k=8

-7-

.~. ' .L3 i
0 °=" 0 0

C) k=9 d) k=16

Figure 8.6 - A uniform finite Figure 8.7 - Some quadrilateral
element mesh. element types

As a basis for the comparison, we consider the matrix H corresponding

to a uniform finite element mesh over a rectangular domain (see Figure

8.6). The number of elements in the horizontal and vertical directions is
assumed to be mh and m respectively. Hence the total number of

,........:,.....-.. ..~~~~~...,.......-.................,........ ................ ,.::,......-.....-,.,........ ,' ' ." ' ." .... ."" ." ./ .... " " " " "." ;' " "..................................................................... ,I m~illl"

a'.~t be m.-.and- ..
------ h .... V..±.
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elements is m = mh my. We shall consider four different types of quadri-

lateral elements (see Figure 8.7). namely: a) four node bilinear elements, b)

eight node serendipity elements. c) nine node lagrangian elements, and d)

sixteen node lagranglan elements. It is easy to check that the total number

of nodes n in the finite element mesh for the four types is a)(mh tl)(m V+).

b)(2m h  )(2m l)-mhm v . c)( 2 mh l)( 2 mvt1) and d)(3m +1)(3m t). respec-

tively.

It should be noted here that H is a banded sparse matrix, and hence

that the cheapest way of storing it and operating on its non zero elements

is to use a sparse storage mode [181. where the non zero elements of

each row of H are stored In consecutive locations in a linear array ELEM.

" . If N is the number of non zero entries in H. then the length of ELEM

should be at least equal to N. In addition, two further integer arrays are

" needed; the first has at least N elements to store the column number of

the corresponding entries in ELEM, and the second contains n pointers to

-,. .ELEM. These pointers specify the position in ELEM of the first element in

each of the n rows of H. Hence the minimum storage requirement for H

• ".. ""is

S = (Cr t c t ) N t c t n

where cr and c are the cost of storing a real number and an integer.

respectively.

On the other hand. each elemental k xk matrix has to be accom-

panied by an integer vector to indicate the global label of each local node

S(e.i). I=1.-- -k. Hence, the total storage for the unassembled matrices is

2,' "S 2 = m kc r t m k c t

2 m Cr t c

Assuming that the cost of storing a real number is double the cost of
9:.,
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storing an integer, we obtain the ratio

i _ 3N tn

S2  2mk 2 t mk

In order to compare the computational cost for the direct product Hp

and ALG9. we assume that the costs of a multiplication and an addition are V.

w and wa* respectively. For the direct product. we include the number of
operations required to assemble the matrix H (ink2 additions), and hence

obtain

2IN = (w w) N m k w.1 i a a*

For ALG9. this cost Is

IN2=( . 2i a a*
Neglecting the second terms in W 1 and W we obtain the pessimistic ratio

1 2'

WIN _ N,,

2 mk

In Figure 8.8. we assume that m and m are much larger than one.

and list the estimated formulas for m, n and N as well as the ratios S1 /S 2

and W1/W2 for the four types of elements of Figure 8.7. and the matrix H

corresponding to the finite element mesh of Figure 8.6.

Element type k m n N S1 /S 2  W1 /W 2

a 4 mhm i m 9 m 0.777 0.562

b 8 mhmv 3 mhmv 4 7 mhmv 1.059 0.734

c 9 mh m 4 mh m 6 4 mhmv 1.146 0.790 ,

d 16 mhmv 9 m 225 mhmv 1.295 0.849

Figure 8.8 - Comparison of ALG9 with direct multiplication

-7



-. '4 .-T'. 77 - 777o7 7 7Io7 .'12I

171

The value of the ratio S1 /S 2 indicates that for elements of order

higher than the four-node type. the overhead associated with the sparse

storage of H makes it cheaper to store the unassembled matrices Re.

e=l.- ... m. It also turns out that any banded or profile scheme for storing

H will require more storage than the sparse scheme assumed here. On

%4-, the other hand. the cost of executing ALG9 Is always higher than that for

the direct multiplication of H and p. However, the ratio WN /W indicates12
that the additional work in ALG9 is relatively small, especially for higher

order element types. This suggests that we may be willing to pay this

price in return for the speed-up and the elimination of memory fetch gained

- from our pipelined systolic system of the following chapter.

%,.

'-

--

o 4,

.= °
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9. POSSIBLE CONFIGURATIONS OF A COMPLETE FINITE ELEMENT SYSTEM.

Our primary goal in this chapter will be to show that the

plpelined/systolic approach may be applied to the design Of a complete fin-

ite element system. We do not Intend to specify the details of an ultimate

system nor to compare different possible designs. Instead. we will identify

the basic functional units in a complete system and then refer to possible

implementations for these units, with the emphasis on the interface and

interaction between them.

By its very nature, any systolic or pipeline network needs to be moni-

tored by a host computer. In our system, the host is assumed to be a

general purpose computer that contains the data base for the problem to

be solved. It constitutes also the only means of communication between the

user and the system, through which the user specifies or updates the Infor-

mation about the finite element mesh and the partial differential equation

and in turn obtains the results of the analysis. The host resembles the
9"!9

heart of our systolic finite element system. It is responsible for setting.

initiating and feeding the systolic pipe with the appropriate data as well as

for collecting the output data and performing some additional tasks that we

will discuss later.

A basic functional unit that should be included in any pipelined finite

element system is a unit for the generation of the elemental arrays. Its

tasks may be identified as follows: a) generate the arrays H e and be for

the elements e=1,. .,m, b) update He and b for some elements to force

the solution to be equal to zero at some portions of the boundary. c) add

the effect of the essential boundary conditions to H and b and d)

-0-

.. .. .. .... ...................... ,..... ..
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associate with each entry of HO and be the position at which this entry is

to be accumulated in the global arrays H and b.

..
%".O _ -

Figure 9.1 - The generation of the elemental arrays

The above tasks may be executed using the systolic networks described

in Chapters 7 and 8. In fact. task (a) may be executed on the networks

NI... N6 of Chapter 7. tasks (b) and (d) on the network N7 of Section 8.1

3 and task (c) on the network described In Section 8.2 (call It N8). These

networks were designed such that when connected as a pipeline (see Figure

9.1). the output of each sub-network is the input to the next one.

d*'. Before initiating the operation of the system. the host should compute

the line integrals that account for the essential boundary conditions and

. load them into the local memories for N8. It should load also the quantities

V. (g), A.(g) and A.2(g), i=1,-- - k, g=l,. .,q into the local memory LM.

Then, the host initiates the operation and pumps the input data for the dif-

ferent finite elements through the system along the proper input links. The

form of the inputs may be described by:

= i-i p3k (E 2 t e i=1.2 (9.1.a)
0.1 e=1.m 1 2

* .9.qt-1 q t3k t9 Pe3k ( P3 (a ) ) (9.1.D)

9q = .qt3kt9 p3k ( 3 ) ) (9.1.0
• 0~9.q +I e=l'm Pk I°1 )(.IC
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= tq3k 9 p3k ( 3 (a (9.1.d)
P9,qtI P=1.m k 2

-= +qt9k+9 3k e 2 E(
P3k+9.q+ 1 enP=lm ( .E ) (9.1.e)

0 LM 0
a iq 6k 16 o3k 2

: °O.q +4" e =l.m( i
_,=.. .. ,, = q 6k 16 p3k 2 e21; 910

9 v,q +4 n P =I' 0,9..

Here. the operator pIk Indicates that the data for the different finite

~ '. . elements are pipelined with a pipe separation of 3k. and the sequences with

superscript e contain the relevant Information about the finite element e.

For the precise definition of these sequences we refer to the corresponding

sections of Chapters 7 and 8. However, we may describe informally the

content of these sequences as follows:

0 e i=1.2 contains the coordinates of the nodes in element e (2k

data items),

0 8
* a.. 1=0.1.2 contains the coefficients a r,1=0,1,2 of the bilinear

r r0

form in element e (9 data items).

S'-e contains a single data item; the load f.

. contains the k global labels of the nodes in e (k data items).

and finally

-- e contains k data Items that specify the nodes at which the solu-

tion must be zero.

Hence, If there are input buffers. the host should supply the systolic

pipe with 4k+10 data Items every 3k time units. This is a relatively low rate

which can be achieved even by a microcomputer. With the help of the

abstract systolic model, we were able to prove that if the input to the sys-

tolic pipe is as given by (9.1), then the system will produce the elemental

arrays on the output links z and ubqt6 u'qt6-u=0,' -. k of N8 according

0.- a to the formulas

.-- A

. . . V-
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. rqt6ut3kt18 p3k 2
Cu.q +6 e =1.m (e ) (9.2.a)

tq+6uI3k+18 3k ( 1.1 ,1 2 a 2- .
..u.qt6 ~e=l.m M1 e ne2 "  ) ) (9.2.b)

.:*.,. '.

where Xk=8 T(k)= T()= k, T(A)- T(Xu)= T(,= k-u for u:0..-k-1.
kk kU U U

'J*" u-and

H -e'---' -,t.ttu

A U =

b u=k

x u glob (e .t) u=O..,k

"4.4 = glob(e.ttu) - glob(e.t) u=0...-.k-1
**,..

In other words, A contains the elements of Re and e and ke  con-'""'u" U' U

tain the addresses where these elements are to be accumulated In the glo-

bal arrays H and b.

.. ,As noted earlier. in order to Integrate the system of Figure 9.1 into a

- ,complete finite element system, we must distinguish between two types of

" ."systems according to the method used for solving the resulting linear sys-

tern of equations

H u b (9.3)r'-!

These are either systems that employ direct solvers for the solution of (9.3).

- - or systems that use an iterative scheme for completing the analysis. We

will consider the systems with the different types of solvers separately.
-.4 ...

9.1. Systems that employ direct solvers.

. f In Figure 9.2. we show a block diagram of a complete system that

-'" uses an LU decomposition for solving (9.3). It consists of the host and

s*** **-o%. . . . . . . ... .. . . . ..' . . .*.,',, .. ', .'. ,.'.. .. .. A , ,- . . .. A . . ., . •. .A' . "° . - . . - . •,,.,.,.. , " ., .. , . - ' , , -' . , . ".'.-\ - - ".-
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four functional units. The unit labeled GEN Is the generator of the elemen-

tal arrays as described earlier In some detail. The output of GEN

(described by equations (9.2)) Is then directed into the unit labeled ASSEMB.

Its function Is to assemble the global arrays H and b. The third unit.

FACT, receives H and b from ASSEMB and simultaneously performs the LU

factorization and produces the solution y of Ly=b.

DLI..

"-'.'/,Figure 9.2 -A block diagram of a system withl a direct solver

,.- Because of the high rate at which ASSEMB receives Its inputs and -

hence produces the elements of H and b, FACT should have enough corn-

i-:_-iputing power to process the data at such a rate. This power may be

," .. ob~tained from a very high speed array processor that may become available

In the future as a result of advances In VLSI and optical 'communication .

.i'technologies. However, with the current technology, the most suitable can-

j, didates for the implementation of FACT are systolic arrays.

, Assume that ASSEMB is implemented as B+1 processor/memory units as

k.,'-described in Section 8.4. Hence. each unit P/M w  O~w<B , will produce at

its= output port O..port w the elements of the w h off-diagonal of the assem-

4w

0;:0

bled matrix H, In order. We may also use an additional processor/memory

"unit P/MB to assemie the global load vector and produce its elements

at the corresponding port haportbea

,

." desc..e in Seto .4. Henc. each uni P/M..- .O . . wil prouc a"'."--" '.-'.'-it-"-"- output-2, port' . O....tth eemnt of the"-.f-diagona of the" se.
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p- , It had already been noticed in Section 8.3. that there is no uniformity

in the rate at which ASSEMB produces the assembled rows of H. For any

time t. this rate was denoted by r (t). In order to obtain an upper bound
p

~- .-" on r P(t). we assume that the nodes of the finite element mesh are num-

bered by means of algorithm ALG8. Note that the km input rows of ASSEMB

are generated by GEN at a uniform rate of one row every three time units.

that is. according to the terminology of Section 8.3, we have r, -. Then,

by Proposition 8.3. r P(t) cannot, at any time t, exceed rt. In other words,

we have r (t) = , which means that the average rate rp cannot

exceed .A more precise estimate of 7P Is obtained by noting that

ASSEMB receives km input rows at a uniform rate ri=- and produces n

output rows at an average rate rp. Hence, - 4 1

With this implementation of ASSEMB, The systolic network of Section 4.3

may be used to Implement the functional unit FACT. From now on. we will

U-. •refer to this network as Sys-FACT. If synchronized by a global clock,

Sys-FACT expects to receive its Input (the n rows of H) at the rate of one

row every three time units, that is the rate r= . row/time unit. As men-

-c. tioned earlier, with rc>rp . ASSEMB will not be able to supply Sys-FACT
NC

with its inputs on time. and hence, we are forced to Implement Sys-FACT

,,.-*,. 'as a self timed systolic network rather than as a network synchronized by a

global clock. More precisely, if an Input cell C of Sys-FACT is connected
W

to the processor/memory unit P/MW in ASSEMB and is expected to receive

thfrom it the elements of the w off-diagonal of H. then. whenever C is
W

. ready to accept the next input Item. it sets the 0_interrupt in PIM and
W

. holds Its operation until P/M puts the required item on the output port

0..port. For further details on the principle of operation of self timed sys-

tolic networks, we refer to the discussion in Section 5.5.
a'.=
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In order to estimate the storage requirement in ASSEMB. we note again

that r and use the result that rp (t) to conclude that the rows of H

will be consumed by Sys-FACT as soon as they are produced by ASSEMB

-' (become B.ready). Hence, the only storage needed in ASSEMB is for the

B+1 active, but not Bready. rows of H that are being assembled at any

one time.

The self timing synchronization of SysFACT makes it impossible to

predict the time at which every element of the upper triangular matrix U

and the partial solution vector y (Ly=b) will be produced on the output links

of SysFACT. However, we know that Sys-FACT does generate the elements

in the last row of U (and y) one time unit after it receives the correspond-

ing elements in the last row of H (and b). Also the last B rows of H.

namely h_... " are made available to Sys_FACT just after ASSEMS

receives its last input at time 3kmt9k+q+16. Since SysFACT is able to

consume these B rows in 3B time units, we may conclude that the factori-

zation and partial solution will be completed at time 3kmtgkt3Btq 17-

3 (kin +81.-"

Finally, we discuss the last functional unit in Figure 9.1. This unit.

BACK. performs the last step In the analysis, namely the solution of the tri-

angular system Uu =y by back substitution. Although its task is simple.

-.- BACK cannot start its computation before the last row of L and the last

element of y are available. Hence a temporary storage (TEMP in Figure

9.2) must be provided for storing these elements upon their generation from

Sys-FACT until all the element of L and y are generated.

The systolic network for back substitutions described in (311 may be

used for BACK. However. we may also use Sys-FACT to perform the back

substitution as described in Section 4.3. Although this may be very ineffl-
a,..

a.°

..... . . . . . . - * ~ - . . .a

! a , °. ° •o -°o.o- . . , ... * a .. .• •. .. . . . . . . . a .. , .
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cent. it eliminates the need for any separate hardware for BACK, provided

that the entire system will not be used to pipeline the computations for

more than one finite element problem. In any case, the back substitution

will not require more than 3n time units, and hence the entire analysis will

be completed In approximately 3(n km B) time units, which is a consider-

jI. able speed up over the time for serially executing the 0(n 2 ) operations

estimated In (91. No comparison can be made with the parallel finite ele-

S '.ment machine of ICASE [291 because the latter cannot use direct solution

schemes.

The system described above profits from all apparent concurrencles in

the finite element analysis. However, it has a serious disadvantage, namely

the architectures of its units ASSEMB and FACT depend on the bandwidth B

of the matrix H. which varies from problem to problem. This disadvantage

is shared with most of the known systolic networks that operate on banded

' matrices [31.7.34]. In order to be able to use a system designed for a

certain bandwidth B on a problem with a larger bandwidth B'>B. we should

be able to partition the computation appropriately to allow Its execution on

the existing hardware. ASSEMB can easily accommodate a partioning in

which each PIM performs the computation associated with more than one

off-diagonal of H. However, the complex communication pattern of

Sys-FACT makes its partloning non-trivial. More research is needed on

-. " SysFACT or alternate architectures for the direct solution of (9.3) if we

desire to have a system that Is independent of the bandwidth B. Pipelined

finite element systems that employ iterative solution schemes do not appear

. . to share this particular disadvantage.

Remark:

The validity of r'<r was based on the assumption that the degree of
Pc

-. . .,

.. . . . .. . . . .. . . . .. . . . .. . . . .. . . .
.. . . . .. .. . . . . . .. . . . . . .. . . . . .
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freedom d per node Is one (see Remark 1 In Chapter 6). This relation

may change If d Is larger than unity. In order to be more specific, weiU
assume that Remark 3 in Chapter 7 is applied so that GEN generates the

d elements of each entry in Re simultaneously. We also assume that

'-, ASSEMB is capable of assembling these elements as soon as they are

received, and hence that the execution time of the assembly stage remains

equal to 3km time units. In this case. the nd rows of the global matrix H

,.*.are produced by the assembler at the rate rp rows/time unit. On

the other hand, the rate at which Sys-FACT can consume the B.ready rows -S

1io r
remains r=- and hence the ratio - is larger than one except".':re ais c  3" rc  kn .

fOr small values of d (see e.g. Figure 8.8). This causes the storage

requirement for the assembly process to increase without restrictions.

In order to limit the size of the storage requirement, we have to slow -.-

down the rate at which the elemental arrays are generated. This is possible

by using one of the following two techniques:

1) A modification of the control parameters in GEN as described in Remark

2 of Chapter 7. Now, each elemental array Is generated In ck time units

rather than 3k time units, where c may be chosen such that _-r
C

3nd <
ckm < 1.

2) The use of a self timed technique for the synchronization of the systolic

system GEN. With this, a fixed storage may be used In ASSEMB and

whenever this storage Is fully utilized, ASSEMB stops consuming the output

of GEN, thus forcing it to a temporary halt until Sys-FACT consumes some

of the rows in ASSEMB. This alternative is preferred as it adjusts the rate

" automatically and efficiently. In this case. Sys-FACT becomes the bottle

,iP

i'• °.
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neck of the system and hence the time for the completion of the entire

computation becomes approximately 6nd time units, where 3nd units are

consumed by GEN and FACT, and the other 3nd units by the back substi-

- ;-tution step.

9.2. Systems that employ Iterative solvers.

Direct solution schemes for the linear system (9.3) do not take advan-

tage of the fact that the stiffness matrix H Is highly sparse. This nice pro-

perty is lost In part during the factorization process, thus missing a poten-

" e .tial for savings in both the storage and the execution time. For this rea-

son, it is sometimes beneficial to use iterative schemes for the solution of

(9.3) despite their obvious disadvantages. namely, the absence of a good

criterion for chosing the initial point and the possible divergence or slow

convergence of the iteration.

Many iterative schemes exist for the solution of (9.3). We consider

here only two schemes that are widely used in conjunction with the finite

element method, namely the conjugate gradient method and the multi-grid

technique.

9.2.1. The Conjugate Gradient method.

This method was originally proposed by Hestenes and Stiefel (211. It

finds the solution of the linear system of equations Hu=b by determining
1T T

the minimum u of its gradient functional g(u)= T u Hu - b u. The

0method starts with an Initial guess u and obtains a sequence of approxi-

mations u lu2 .. to u iteratively. At the ith iteration step. a new

approximation u is obtained from the previous one u by the addition of

a step size si along a suitable direction pi that reduces g(u). The

method may be more specifically described by the following algorithm

_.__,:..-
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T
ALG10. where <x.y> denotes the Inner product x y and Ix I is a suitable

vector norm, as for example, the infinity norm defined by

Ix I = max( X 1; 1I n) for any n-dimensional vector x. The Iteration Is

forced to halt if it does not converge within 1max iterations.

ALG1O

INPUT u. H. b and an acceptable tolerance e.

1) r 0 = b - Hu 0

"OR / =0,. -. /max DO
I iI

2.1) a = (r.r> p.

2.2) IF (1=0) THEN p0  r

ELSE p r pi

p .9.>

2.3) Compute the vector y= Hp and the scalar 0 = <p .y

2.4) s

2.5) u u + i p

2.6)r' ri _s Y

2.7) IF(Ir I<E) THEN exit the loop and consider ux-u i/+

Note that step 2.7 in ALG10 may be replaced by other stopping criteria

and that some tests may be added for the detection of any divergence in

the Iteration. Note also that most of the work In ALG10 is in steps 1 and

2.3 where a matrix-vector multiplication is performed. The computations in

the other steps are simple vector or scalar operations.

The convergence properties of the method may be improved by a tech-

@2 nique called 'preconditioning'. where the solution of Hu=b Is obtained by

solving another linear system Hu =b that converges faster than the original

one, The transformation between H, u and b and H, u and b usually is

, simple and relatively straightforward. For a detailed description of the

:.-. . . . . . ..

r. .. ., . '. '. '. ".'. .. : . .' .' .: ".-_,:'.( .._ . 7 .":" . . ., , ,. ._'=,., .. '.. .b ,> : -
''.,.,. ,, ,.,. , _ -1,,,, ..- ,,a,,
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preconditioning techniques we refer to [121.

The second method that may be used for solving (9.3) Is the multi-grid

method.

r1-11 I 9.2.2. The Multi-Grld method.

F .The basic philosophy of this method [38.61 Is that. in an Iterative

scheme, the amount of computation at each step should be proportional to

the gain obtained from it. In order to be more specific, we denote the

finite element grid (mesh) by G0 and the corresponding stiffness matrix and
" od 1

load vector by H0 and b0 . respectively. Also, let u ,u • • -be the
0 '

sequence of approximate solutions of H0u =b 0 generated by a given iterative

scheme.

At the first few steps of the iteration, the residual r =b 0 -H0 u

decreases rapidly from one iterate to the next, but soon after, the conver-

gence rate levels off and becomes very slow. Closer examination [61 of the

Fourier expansion of the residual (the error) shows that the convergence is

fast as long as the residuals have strong fluctuations on the scale of the

the grid G0 ' and that this rate slows down when the residuals are

smoothed out. At this point, it is more beneficial to reduce G into a

coarser grid G1 and continue the computation on G1 . This has two

advantages, namely 1) the relative fluctuation of the error will increase when

measured with respect to the coarse grid G1 . thus speeding up the process
of eliminating the error components that were decreasing slowly on G0 . and

2) the cost of the Iteration steps will decrease due to the reduction of the

number of elements and nodes and hence of the size of the system. This

idea may be expanded by using a sequence of grids G0 G1 .... where

I .. each grid Gi  is coarser than G _1 ,  Note that, in addition to the applica-

tion of a specific Iterative scheme, the multigrid solution process involves

-4 ,-

"p
-4,

':".' . . - ' ' . . , . , " , " % ' ' , , : . " , ' . , , , , ' , . ' . . , . , . , : ' € " ' ' .' ' " " ' " " " "" .";" " ' " :
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some data transformation between the different grids.

For a more specific outline of the process suppose that a sequence of

fine to coarse grids G0 G1 , . • has been given. The number of nodes in
'A1

each grid G1 is denoted by n1 and hence, any vector defined on G i is a

ni S

member of the vector space R the desired solution u of H0u = b0

corresponding to the finest grid is obtained from an Initial guess u0 by the

recursive application of the following algorithm ALG11, starting with i=0 and
0 0
U 0 =U.

LG IoI
AI.G11 /

INPUT: A grid G. the corresponding matrix H1 and right side b. and
nl IV

an Initial point u. CR n

1) Use an iterative scheme (e.g. the conjugate gradient scheme) to
0 1

compute a sequence of approximate solutions u. ,ui .,. Stop the

iteration when the rate of convergence becomes smaller than a cer-

tain acceptable value. Let U1 be the last obtained approximation.

A A

2) Compute the residual r= b - Hiui

3) Consider the next grid G and obtain the corresponding residual.7"

r ERn i4" on G by appropriately averaging the components of r..

Obtain also the corresponding stiffness matrix Hi.

4) Find the solution of the lower dimensional system

H Alt, =ri4. IF i41<k. THEN invoke ALGll recursively. ELSE.

solve Hk~k = rk exactly by means of a direct solver.

5) Interpolate A back from Gi to G. Denote the interpolated

n/
vector by a.' (A.eR).I I

* •

6) Set the solution u = u.t .

The averaging operation In step 3 is taken to be the dual of the inter-

"=-. °. .
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polation operation of step 5. That Is. if we denote by /ii1 the linear
operator used to obtain ritl from r and by / 1  the linear operator used

r. b th

to interpolate 'J1 to Ail then the two operators are related by

1, = c U with some constant c.

Finally, we note that the matrix Hi 1 1 corresponding to the grid GI 1 ,

may be obtained either directly by using ALG5 of Chapter 7. or from the

relation H 1 H I It can be seen that the two approaches are
i +1 I I

equivalent.

After having introduced some possible iterative schemes. we describe

next their application In the context of a systolic/pipelined finite element

system.

9.2.3. An iterative systolic finite element system.

in what follows, we will assume that the iterative scheme used to solve

(9.3) involves the matrix H only in the computation of Its product with a

certain vector. It was shown in Section 8.5 that this product may be

formed using the unassembled elemental arrays, thereby eliminating the need

CI for the irregular assembly stage. Moreover. the system described in

Chapter 7 pipelines the computation of the elemental arrays F1 ,. .. ,

Hence, for a given vector p. the calculation of the partial product vectors

1-1 M-n 1 M
Y =H.p .. =H'pm, may also be pipellned. where p .... 'p and

1 .y are as described in ALG9 of Section 8.5.

The multiplication ye =Pepe e=,1..- .m may be performed on the sys-

tolic network described in Section 3.1. This network is shown in Figure 9.3

after relabeling its nodes in a manner consistent with the networks that

* A generate the elemental arrays. The additional row of cells shown in the

figure is used to prepare the output of GEN in the form required for the

....... .........-....-....- ......-. :.... .. .... ,.-.'-,--... .................. ::.,.'.......,.,
' ' .o.r.7- -.- , = .=.;,I,, .,

,,,, " " .. . .. ... .. . . . , .. ,- , , ,.,., . , -,'> ,. : ,. ','.- .; . .:-,;,'.',: - . , ,'.,,,,A., -. ',
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Figure 9.3 - A matrix/vector multiplication network

proper operation of the multiplication network. More descriptively, the input

links z u0,. .k-1 are connected to the corresponding output linksu.qt6

in the subnetwork N8 of Figure 9.1. Hence. the data sequences on these

links are described by (9.2.a). However, by comparing (9.2.a) with the for-

'. --" mula (3.11.a), given in Sectlcn 3.1 for the Input of the multiplication net-

work. it Is clear that the elements of the uth off-diagonal of the multiplied

"- " . matrix should be followed by u zeroes when transmitted on the input links

of the network. These zeroes are not present in the output of GEN as

described In (9.2.a).

In order to insert these zeroes in the data streams, we use the multi-

plexer cells (u,qt6). u=... ,k-1. to multiplex appropriately the data on the

links z with the zero sequence L. The operation of these cells isu.q-It6

formally described by

M3(k -u )3u

,u.qt7 =  M qt6u+3kt19 (Cu,qt6

With the help of Properties P5 and P15 in Appendix A, it can be

shown easily that the data on the links z are in the form required for.. ,-.. u ,q 7

the proper operation of the matrix/vector multiplication network. namely

:'-q' = t6u 3kt19 p3k 2-

.q t 7 P e 'I'm (9 ,m
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r q.

• - "0 I f t > k - u.

In orer t obtin t e i etors ?t e. .m h omoet

of heectorsp= , and e = 1 P-- t bepoviedonet the pu tor.. te.

ee

F io rderG9 towobain Pth desiredetors Aying~... the akompoets
according to the formula

= ~q+ k+ 1 3 k 2 -

PO.q7 = PqkI'm (e 2 V (9.4.b)

where T(v )=k and ve(t) = P t is the 1 component of the vector p

From ALG9 we have pa = p (glob (e t)). Applying the remark of Section

3.1 with c=3 and using the technique of Section 5.4 for verifying the pipe-

lined operation. we may prove that the output on the link rk+2q7 is

n i9k t 21 3k 2n e (95)
Pk +2. +7 Pe=im(e 71 )95

where T (71 )=k and 71 (t) y t~ Thus 77e contains the components of the

vector ye =R

If the host computer collects the outputs from r k+q+7and accumu-

lates each element Yin Its correct position y(glob(et)) in one time unit.

then the product matrix y=Hp will be available only eight time units after

the generation of the elemental arrays is completed.

In an iterative scheme, the formation of the product Hp. for a certain

vector p. constitute the major part of each step. The remaining part of

each iteration step is less time consuming but depends on the scheme

being used. It also requires some intelligent decisions concerning the con-

vergence rate and the stopping criteria. Although it is possible to design

special hardware for the completion of some iteration, we believe that it

would be more appropriate to assign this task to the host computer.

.°''...'2.'...'-...'." ..'2. ".i'.-'2-" .- ...' . '- -.. "..'- -. .- -.-.'-. • " ,v- - ...- •,'.-..- , .....: .,- -, . • ,.-
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Figure 9.4 - A system that employs Iterative solvers

In Figure 9.4, we show a block diagram of a systolic system that

employs an Iterative scheme for the solution of (9.3). It Is composed of a -.

host computer and two systolic functional units; namely GEN for the genera-

tion of the elemental arrays and MULT for the matrix/vector multiplication. V.

In this system, the host is more involved In the computation than In the

system that employs direct solvers. In fact, the host is a general purpose '

computer that executes a sequential finite element program and uses the

systolic units GEN and MULT as high speed devices to perform some

compute-bound operations in the program. .

The elemental matrices. Re, e=1, -- .m. are used throughout the itera-

tive solution process. Hence, they may be stored in the auxiliary storage

STORE (see Figure 9.4), and repeatedly used in successive steps. Note

that the form of the input to MULT described by (9.4) was implied by the

assumption that MULT receives Its Input directly from GEN. However, if the

elements of Fie. e=l-. .,m can be fetched from STORE at a rate higher

ethan the one specified by (9.4), then GEN may generate the vectors y

e=. , -. m at the same rate. More specifically, if we replace the input -

sequences (9.4) by

"

J
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Cu.qt7 =lM (A )

O.qt7 -=.,,,

with some Initial delay a. then the output will be described by

Pk +2.q t7 0 a.k

rather than by (9.5). That is we may increase the speed of MULT by a

factor of three.

,- But for use with practical problems. STORE should be a high capacity

storage device. By current technology standards. this means that its speed

will be relatively low. Hence we may not be able to supply MULT with the

needed inputs at a rate faster than the one specified by equation (9.4). In

that case. it is more appropriate to eliminate STORE from the system and

to use GEN for the regeneration of the elemental arrays at each iterative

I step. This may seem to be an unnecessary computation. However, by

. applying this idea, we increase the speed of the system by using a
%°. resource that would otherwise be idle.

The idea of regenerating the elemental arrays Is even more attractive if

- a multigrid technique is used for solving (9.3). More specifically, it is clear

' "from ALGII that the multigrid technique often switches from one grid to

another, and in each such switch the global stiffness matrix corresponding

to the new grid has to be generated. In that case. the regeneration of the

" . :" elemental arrays in our system becomes an essential operation rather than

a redundant one. Note that the architectures of GEN and MULT neither

depend on the specific mesh that covers the problem-domain nor on the

bandwidth of the resulting matrix H. Hence, the matrices corresponding to

the different meshes may be generated from GEN without any reconfiguration

or change in the control parameters.

i- ,.--.
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Finally, we note that the speed-up in the finite element computation

achieved by the system sketched in this section is due to many factors,

namely: 1) The pipelining of the generation of the elemental arrays. This

factor is more prominent if a multigrid techniqUe is used to solve the linear

system (9.3). 2) the elimination of the time consuming fetch operations from
M,

the slow speed auxiliary storage. 3) the reduction of the time for each --

Iteration step by a factor of k (kd in general. as we will see in the next

section). which is the speed-up provided by the systolic network MULT. A

general mathematical formula for the overall speed-up provided by the sys-

tem seems to be Impossible to obtain. This is mainly due to the absence

of any reasonable criteria for the estimation of the Implicit speed up

obtained by the smooth flow of data in the system and the elimination of

the store/fetch operations of both the data and the instruction. In fact

more research needs to be done in order to obtain a good measure for

the evaluation of systolic systems.

Next. we consider the decomposition of the multiplication operation

ye=Repo in the case of problems with more than one degree of freedom.

9.2.4. The decomposition of the matrix/vector multiplication for d > 1.

In problems with degree of freedom d>1, each (1,) th element H.I,

l4iJOk of the matrix Re Is a dxd sub-matrix. Here. we denote the

th -. th
(gi) element of this sub-matrix by Rejg.I Similarly. we denote the g

element of the d-dimensional sub-vectors y and pe by Y,;g and pjeg

respectively.

With this notation, the dk components of the vector y = Hpe are. for

i=l,... ,k and g=1.. ,d, given by

Ir
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i-1 Hi1 j .i Pj .

d

k
where Ae HI1=1

If the Idea of Remark 3 in Chapter 7 Is used, then the systolic system

GEN may be appied to generate the d elements H I. d.l of each H

- , simultaneously each on a separate output link. Hence, each link z

O4u<k-l. may be replaced by the d2 links g.1=1....d where the

;% output, data on these links are described by:

= *q+6u 3k + 19 p3k e2
u-"1 u (9.7.a)

with T(A k andu;g .-

H ~ If t 0-u
.'.. . .. :g .I' )M." '" 0 if t >k-u

This is a generalization of the formulas (9.4.a) to the case d>1.

Then, the d2  partial sums Ae  g.1=1,* d may be generatedi;g.l gl...d ay egeete

simultaneously by using d Identical copies MULT 9 1 . gl.,d of the

multiplication network MULT. The inputs to each network MULT are the
g .

generalized forms of (9.4.a/b). namely (9.7.a) and

b"2-qi.= n9+3kt19 p3k (2 ) (9.7.b)

where. for any g. 1 g(d, T( r .l)=k and 7a .(t)=P : "  With this. it is

straight forward to show that the output of MULT is

= q+9kt21 o3k (e2 a (9.8)
* " kt2:g~l e=1.m e

A,-

***o *°. =.. *• . * *.. • . . - . . . * -%.% *% %*".".*% *.'., -".. ' .% I"L *" .. " *~% ~ , . '=" % .< *. -% ... * - . . -* .
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*where T (7 ,1)=k and 71: j1(t)=A t:g *1 This is the corresponding general form

of (9.5).-

In order to obtain the components of Y1;g ,the d output links rkt;g

I =1. - - .d for a fixed g. I<g 4d. are connected to an adder as shown in

Figure 9.5(a). Hence. the output of this adder Is described by

M 11 IL T

(a) Non Interleaved multiplication (b) Interleaved multiplication P

Figure 9.5

~q 9k t22 3k 2 e 99
Pk t3;g 0 =1.m (e

0 d ewhere T (71 9)=k and w 9 (t)= A At. = -t~

We should note here that each of the d networks MULT operates

once every three time units. However, the efficiency of the system may be

improved by interleaving the computation on a reduced subset of these net-

works. In order to be more specific, we assume that d)13 and apply the

Remark 2 in Chapter 7 to increase the pipe separation during the operation

of GEN from 3k to dk. This allows us to use only one link i to multi-zu g
*plex the data on the d output link z 0 1 U 1~'I=1... - .d. In terms of data

sequences, this means that the equations (9.7.a) are merged into
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= qt2du +dk + 19 odk 1 .., ..I d -1 d 1 d
nug e=1,m(M1 ( " Nu;gd1 e

l u;g,d ))- g=1--.d and u =0.-, ,k-1 (9.10.a)

We may then use only d matrix/vector multiplication networks

MULT 1 .... .MULTd. and apply to each network MULT .14g (d. the inputs

described by (9.10.a) and

PO;g = {q+dk 19 pdk (M1 .1 ed-1 IrV ,In d-1 e d - 1 d

0=1.m 1 9 11 9 d

. ,q+dk+19 Pdk ) (9.I0.b)

=1m g 9

Here. for any g. we have T(w )=kd and 79(t)= Pt" that is. the tt ' com-

V ponent of the kd-dimensional vector p.

With this Input to the network I/O description. It is easy to show that

the output of MULT is

.kt- = +qe3dk+21 odk 1 ... 1 d-1 e nd-1 ed-1 e
P'k+2;g ;=1,m (MI (1 g,1,m1 , 1 d

The accumulator shown in Figure 9.5(a) is used to accumulate every d

successive Items on k2;g. The operation of this accumulator is formally

7.A described by

P--k'3;g =  gq +22.d.1 --Pk + ;1; A Pk +2 g

which gives
. ~1- = q+3dk+21 +d pdk (ed-1 )

Pk +3;g P; =I',m 9 g)

Thus. we obtain the same results as with the sequence Pk +2;g of equation

(9.9) but at a rate of one result every d time units rather than every three

time units. In other words. in order to increase the efficiency, we have to
Irc reduce the rate at which the system operates.

... -, . .i. , .- . ".. .. -. J* .... % . .j~. -. ~
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10. CONCLUSION.

This dissertation is intended to contribute to the area of computer

architectures In two different ways. namely (1) by formalizing the concept of

systolic computations, and (2) by providing a basis for the design of a U)

systolic/pipelined system for finite element computations.

I...The mathematical model suggested for systolic networks provides a

method for a clear and precise specification of systolic computations. It

also results in a formal technique for the verification of the operation of

systolic networks. The central concepts in the abstract model are those of U

data sequences and sequence operators. Although we only defined the few

operators needed in this work, It should be clear that further sequence

operators may be introduced to model other types of computational cells.

The computer equation solver, written to supplement the abstract model.

is intended to be used in particular for the computational assessment of

systolic networks in those cases where the analytical verification is difficult.

The application of this solver is equivalent to the simulation of the operation

of the given network for specific input data. The syntax directed approach

used in the implementation of the solver/simulator led to a very modular

program. which simplifies the task of introducing new sequence operators in

the future. Actually, the addition of a new operator (a new production rule

in the grammar) requires only the implementation of a corresponding

semantics routine that describes the effect of the operator.

The potential of the abstract model extends beyond its application to

clocked sytolic networks. in fact, the discussion in Section 5.5 is a first

,tep toward the application of the model to self-timed systems and the uni-

* ..

. .. ~~~~~~~~~~~~~~.................. -....... ......... .. ..... - .. ,,:.. -..-.. ,..
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form treatment of systolic networks irrespective of the method used for syn-

chronIzing the operation of their cells.

Besides its value In demonstrating the power of the systolic model. the.

design of the finite element system suggested in this dissertation may be

* particularly useful. In addition to being adequate for VLSI implementations,

it has the advantage of being modular in the sense that if the system Is

designed for a specific number k of nodes in each element and order q of

the quadrature formula, it can be easily modified to perform the analysis for

different values of k and q.

Moreover, by applying the idea of pipelining the computations for the

different elements, we obtained a design that is independent of the domain

of the problem and the number of elements in the grid. It should be

noted, however, that the LU factori7ation network used in the system based

5 on a direct solver does depend on the bandwidth of the stiffness matrix.

which in turn depends on the finite element grid and on the numbering

scheme used for labeling its elements. More research is needed in order

to obtain a system that is completely independent of the structure of the

* - finite element grid.

C., In Chapters 7 and 8. we presented an analytical verification for the

design of the different components in the finite element system. The design

was also checked using the solver/simulator of Chapter 4. However. due to

space limitation, we did not include the details of the simulation in this

dissertation.

Finally, we note that It is not easy to define a measure for estimating

the efficiency of systolic networks. An intuitive measure would be the quo-

tiont where T is the time needed by a systolic network to complete its

-.computation. P is the number of computational cells in the network. and C

..

* 4 4 4i.4 * * 4 . . .., 4S4' .4 ~ - * - 4- .-- .- ,- . -
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is the number of operations to be computed by the network. This measure.

however, does not take into consideration the type of operations performed

by a cell, which in our case range from simple memory cells to floating

point dividers. It also Ignores the benefit obtained by the regular movement

of the data in the network. In [23] a more elaborate measure was sug-

gested that takes into account the bandwidth of the Input and output links

of the network In comparing the efficiency of different systolic networks.

Both measures estimate the utilization of the computational cells In a net-

work without differentiating between the different types of cells. This Is

acceptable if all the cells In the network are of the same type. However, if

the network contains more than one type of cells, as Is the case with our

system. we believe that the utilization of each cell should be multiplied by a .,
?"

weight that reflects the hardware complexity of the different cells. More

work is needed to develop an efficiency measure of this type. c-

"

.4

• I

m'-4

Io
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APPENDIX A

Properties of sequence operators.

In this appendix we list some properties about combinations of the dif-

ferent operators defined In this dissertation. All the properties are directly

verifiable from the definition of the operators and are very useful In simpli-

fying any manipulation of the sequence expressions.

Most of the properties take the form *sequence expression = sequence

expression'. However, some have the form * sequence expression -

r sequence expression', where we formally define the implication operator -

as follows:

IF for any t either 7)(t)=I(t) or 71(t)=8 THEN J-71

that is 71 is equal to j after replacing some of its elements by 6. Conse-

quently, if 1-71. then we may replace I by 7 in any sequence expression

as long as 0 is treated as a don't care and not as a special symbol. that

is in the contest of inert computations. Of course. I f -7 and 77- then

.. j=7.

P1) For any element-wise operator "op" with 0 'op' 0=6 we have

1.1) For r = fl. e. E or P

.(-) 'op' r(7) = r( 'op" 71)

7 ....;O " . 1.2) M .r  w n( . . n)  op " M r  (71 ....7n =

-=W..*..w

1.3) As a direct result of P1.2 we have

'Op" Mw 1..wn ( 7n) = M ....wn([ 'op' 7/11. .. 'op' 71n)

1.4) If. in addition. 'op' is a 8-regular operator then

.'S . ",, ,., ,,. ., ... .. ., ..-,. ,.,:,. ..-. . * , , . ..,2... .'.a
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.

r  ' 71 =r ¢

where T(C) = min(T(07)-rT(t) and C(t) = J(t) 'op' 71(ttr)

P2) For the scalar multiplication operator .. It follows that

2.1) For r = n. e. E or P

w . r(1) = r(w .) M

2.2) w .M w 1 .... wn (711"- w MW ....wn ([ ". -[ 11r ''7?n) Mr [w .7 ]- -[w . /n])

1P3) Composion of n with Itself
3. 1) n n n 2 2

3.2) fl- I (I I

-1
3.3) n f , = j If and only if (1)6=

-13.4) ,1 --, f

P4) Composition of n with e

r k ,(rtl)k re n = 171 e for r)O and any k

P5) Composition of C1 with M

5.1) l a M . . ) = MW ..... wn (n .
r n ~r tsn

for any rand s > -r

52) 0 Ml.wn = w Wi .... wn ( f

Zr I".i n ) Mr n- 1

5.3) 0k M w l .... wn q M ,...wn (n .( k~l I

where k = w 1- . . . tw
1n

5.4) M w l ....wn ql . ,n r ,-r Mw 1,....wn q .
r" n rt n

w .... wn ( 1".. ,Fi .l.)w

5.5) M W q= M 1  q .. .. nq -q,..n

where q w 1 .. +wi 1

1P6) Composition of r) with E

6.1) k = E for any r and s > r

62) Erri-i ri-i

*6.3) E-k nk 4 nk ? k

- -- .. -- .- . . . .'r- .- .- "'
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.

, - Composition of n with A

7.1) Ar ' k,.s nU = n u Ar - u k S for u < r
r7.2) Ar l 'k, = r -r Ari l '.k.s

PS) Composition of n with P

., 8.1) f .m ( r e

8.2) pk m ) f 4o) k e) if T( Q e ) 4 k-r

8.3) fi- 0=I, Pe =I'M (n  I if T( ) 4 k

8.4) P* ( -r e -r pk (1) if nr n-r 1e e
* =-I.m •I'm i

8.5) k~ ppfi

: ,; P9) Composition of e with Itsellf

e r e r = e e r  ,=ekr k +r

P1O) Composition of e with E

10.1) ES. es -'e

10.2) e-I ER Esk ea-7

Pl1) Composition of e with A

A ei-Ria = E ea -1 A"".
-1

S'- "P12) Composition of e with P

,sk ( e 3- s) -I pk (o
" e=,m 0=1,m

P13) Composition of M with itself

- 13.1) If =M .... (71' •...7°n) then

1i. 1"": M~r ... 1( ,..., i ... , ) = M I .. IAi . .l ~' 'n

13.2) MA-m .1....1 (MA n.. .... , .* n) . 711 .7 )

M-n-m,1 .... 1 7 M . 1 .,n) for min < k
r+n I"I

P14) Composition of M with A

r~ks 1 1 rk~s
' 14.1) A M 1  (i,. .,) = A ' r for 1(r 4s

r ik, 1 1  1
14.2) A M ( ' " "** = 1 1 1*1 "r I- -k Mr~

where 71. = - u

U =,
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P15) Composition of M with P

Mw I....wn(pk
1e=1,m'1 I 01.m n

p m (M w....w(, .4)) for k=wl+* *iwn

P16) Composition of E with P
Ek ... )kp

16.1) (E ..im~ I )1m~
I~~~ =1,Me Im I1 . k . ke) k ..k e)-

P17) Composition of A with P

AlIA.1 Ink ) = pnk (1.k 1 ee=l.m () e=l,m •' e

P18) Other propertles Involving the multiplication operator ,

18.1) El f 7) -r Q](r+l) .nr,,-r if T(71) < kr

18.2) If T(fr)<kn for r=0.... .n-1 then
... M 1i Q k. I .. "-

0M1  0 n-1 ) P~ k 1) = l*M*1 , (0' "'n-1)

where Cr n1WOnr)t1) r r=0.1.- .,n-1 and Is the

modulo n addition operation on Integers.

P19) If 71, J=12..... k are such that T(77.)=n, then

k ~J-1 ~ k-1
i=1 -

where T(71) = n-(k-1) and 71(t) = , (tk-)..:i- /=1 ..

The next result uses the ® of Section 2.1:

P20) Let the sequences 7y" j=0"1....k satisfy T(71) = n-1. then

2- k

where T () = n and

1U-1) t=l.2.....k

to(t) =

E 7iJ(t-1) t=k + 1,k +2.....n
j=0

.6 ":, ' ' " " " . . " * r ' . -' , ......." , ."-, .." ._. '. : , , ' ' ' ' ' ' ' ' . . .' " .-' ", ..' - " ' -, " , " - ." ' ' . / " • " " : -'
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I

Next. we prove some lemmas that we used In the dissertation.

Lemma 1: The difference equation

1+1 n A I=8. i. *,' -. k+1 (a.1)

K has the solution

- r-1
c. -- = (r-s) rcl -8)
or 08 r-r-/s-1 r=sl.. . .ktl. (a.2)

j =8

Proot The proof uses induction on r. Evidently. for i=s in (a.1) we obtain

a. 5+°81  a. + A8S

which Is identical to (a.2) for r=s+l. Hence assume that for any r=s+l.

a.k. r is given by (a.2). then from (a.1) it follows that

-r+1 = Or Ar
= c c(r -) r-1

(fl ~~ ~~ ~C U-8)Ar/8 tri ~ ~i 6r/ -1 S

r-1
c (r 1-a) C +(I- A.-A:' "~~a -" =" A = r-l 8-1 + Ar

.'- i =8

=c (rtl-s) i (1-8)
as + Ar-I s-1r

c(r+l-s) C Q -s)

which proves that ar 1 Is also given by (a.2).

Lemma 2: let f be the ranking function for the set X=(x 1  x2 ....xn}. asx 1 2

defined in Section 3.3. then

min(max(xk  f (I-1 ) (Ik ) fx(k-1)) = f (l,k) (a.3)
-k x "

Proof: Let y I , 'Yk- be the result of sorting x, "' Xk- in
"-1

ascending order, and z1 , ,,z k the corresponding result for x1 . *. xk.

Hence, fx (i-1.k-1)=Y. fx(,k-1)=yi and fx(~k=z Now consider the fol-

.-. , . .. . . . ... . . . .. ,.. .. .. . , -, -.. . . ... . .. .,. . -- . . . .
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lowing cases:

1) If xk YI < <y then the left side of (a.3) Is

min(max(x, , Y/-j ) . Y1) = min(yi- 1  yi, = Y/-I

Since z,, .zk are obtained from yI"*'Yk-1 by inserting x. in some

position before y1-I we Immediately see that y z".

2) if < < Y,. then the left side of (a.3) is

min(max(x Y-1 Y =Xk

and In this case it Is clear that x = zi.

3) If Yi-I < Yi < x. then the left side of (a.3) is equal to y." which in

turn Is equal to z, because. In this case. xk is inserted in some position

after y.
.sj

Lemma 3 The system of difference equations

2 1.2
'pit l M a ( ( j * Pi]) I=r . . r1  (a.4)

f) 'A1,2 ( r (a.5)

with the conditions p = L and str0>3 has the solution

1,2 (),t . ) i r01,2 2n M +i "k1 0 ~

Ci = fl Ms 1 Lf -1 .&'-~ 2 in [i 2  2_ + x 1 0) i=ro 2.+,1

n fM~ (inl4x + *n2  + X L) 1=r +2.- --. r1

Proof: The cases I=r0 and r=ro+1 are easy to verify by direct substitution.

, Hence. we will consider only the case i>ro+2. First. we will prove that the

solution of (a.4) is
= M1 . 2 ([21 4 ,

Pi M s1  _i(CO x il )x4_1 2 ]  .1 ) i=r0 +2.. .. r1  (a.6)
F t s

.7, For this. we use (a.4) twIce to get :

.-
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2 1.!": . IPi us -ti "- t Pi-l])

r 2 M 1 .2  (L [)k +" 2 1.2
'3+ 2*- 1-2 -2~

By applying Properties P5.1. P5.2 and P1.3. and replacing the

sequences non relevent to the computation by 8 , we obtain

'2 1 2  (t . (8" 0 2 2

= 2 ,1- ,12 2

11 .1i 2 x .24) (a.7)

Now. if I=r0 +2. then. from the hypothesis. Pi_2=PrO=L. and thus (a.7)

reduces to (a.6). Else. if I>r 0 +2, then we replace P1 - 2 in (a.7) by Its

value from (a.4). This gives

. M1 . 2 ~2 ~ 4 1.2 fM-:1.2 ((n 2 x +1.) 4 x +_ M 1.2 ( .O") 8s'. i -1 I a i-3 (  
. ).i 3 1 3 ) ]  " 8 )

where, again, we replaced ( 1,- 3 +P/_ 3 by 0 . Now. Property P1.3 gives

P. = M'. 2 ( M 1 . 2 On 2 x +04 6 . ')S+i Sei 1- -2 ] .

- 1, (Erl 2 x n4 x n6 L

MM which reduces to (a.6) for a1"1>6. that is 3 +ro>3.

Next. we substute (8.6) into (a.5) and apply P1.3 to Obtain

=°fl1, 2.( M 1 2 (2 i- 2 4

. Mi M (~ M 0 .x )

which is the required formula for the case iOro+2.
6o0

[ '
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APPENDIX B

I-

The grammar for the SCE language.

Terminal symbols

PAR INDEX SEQN FOR DO END MAXTIME INPUT OUT
Comma Semi Colon Equal Plus Minus Mult Dlv
Lbrak Rbrak Lcurl Rcurl Lpar Rpar Period0 Z T A E M U1 U2 .

Identifier Positiveinteger Positivereal -'.U

+,.. Grammar rule hs?

1) <prog' (declare> <in-part> (body> (outpart>
2) <declare> (pardecl> (indexdecl> <seqndecl>

/x PARAMETER DECLARATIONS */

3) (par-decl> PAR <par-list> Semi
4) I

5) <parjlist> : parlilst> Comma <parstmt>
6) 1 (parstmt>
7) <parstmt> Identifier Equal Positive_integer

/* INDEX DECLARATIONS 3/

8) <index-decl> INDEX <l_list> Semi
, .. 9)

10) <i-list> =list> Comma Identifier

11) identifier

/ SEQUENCE DECLARATIONS 3/

12) <seqn.decl = SEQN <dimlist> Semi
13) <dimlist> =dlmlist> Comma (seqndilm>"
14) ( <seqn-dlm> -K 15) <seqn-dim> Identifier Lcurl <range_list> Rcurl
16) * Identifier
17) (range-list) : range list) Comma (range)
.18) * <range>
19) <range (lexpr> Colon <lexpr>

. . . . , ., .. ,, . . . .- .- m
= .

,.. . . . . . . . . . .. . . .-.-.-. ".. ... .. -.-.. .. '." .",.. . .".. . . .""."-.. .- " " "'.

,....' +'..-. :-.:..";:.', .,,:,+ .. :., . . .+"..- % " , "., :,"r ,. ., ".., ", ,, S ".* ", . .¢ " .; .- " .;,. . . . . , ,, . ,-
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/2 INDEX EXPRESSIONS It/

20) 'L-expr) (L=<IexPr' Pius L.term>
21) 1 e-xpr' Minus (Lterm>
22) 1 (L-term)
23) (1term> (1term> Mult (I~atr
24) _factorfa>~r

*25) (1-factor' (simple...factor>
26) soMinus (simpe-factor>

LP27) toLpar <Lexpr> Rpar
28) 'slmplejfactor> : Identifier
29) 1 Positlve~integer

* /2 THE BODY OF THE PROGRAM *

30) <body> <Stmtlst) Semi
31) 'stmt.Istp (stmt.list' Semi (stint'
32) 1stmt)
33) (stmt) (eqn>

aw34) 1 for__stint'
35) <for...stmt> FOR 'tor...spec) <StmLlIst) END

*36) (for...spec Identifier Equal <L-expr> Comma LiexpP> DO
~. 37) (eqfl) (seq-..spec> Equal (seq...expr)

/3 SEQUENCE SPECIFICATIONS A/

38) (seq...spec> : Identifier LcurI 'indicat-lis> Rcurl
-39) 1Identifier

40) (lndicat.list> (Indlcat-1.lSt) Comma (I-..expr>
41) 1(L-expr)

/1% ELEMENT WISE OPERATORS ON SEQUENCES IV

42) (seq...expr> 'seq-..exprP Plus (seq...term)
43) (seq-..expr> Minus (seq..term)
44) *(seq...term>
45) (seq...terin (seq-terin) Mult (sjactorn

7.46) * seq-tern Div (s-factor)
47) 1 (seq-term> Ul1 's-factor)
48) ( seq-term> U2 <s...factor>
49) 1 (s-f.actor)
50) (sjactor' Positive-..real Period (seq-factor>

4 51) (seq-factor>
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/A OPERATORS DEFINED DIRECTLY ON SEQUENCES A/

52) (seqjfactor) 'seq..spec
53) (simple-..op.) (seqjactor
54) (multiplex-..op) Lpar choicejlst' Rpar
55) 1 A Lcurl Liexpr> Comma (-expr> Comma

(Iexpr' RcurI <seq-..spec>
58) 1Lbrak 'seq-expr) Abrak

57) (multple.,op> M LcurI 1..expr> Semi (ratio-ist> Rcuri
58) (Simple-op> 0 (op-power)

59) 1Z (op power>

61) 1,E Lcurl L-expr> Comma LI-expr> Rcurl
62) <op...power> Lcuri <(Lexpr> Acuri
63)
64) (cCC8ist> (choIceIIst' Comma (seqexpr>
65) 1 seq...xpr>
86) <ratlo..jisD <ratlo.,ist> Comma (L~expr>
67) 1 (I...expr)

/* INPUT SPECIFICATIONS *

68) (In...part> INPUT Lpar (Inp_.Ist Rpar Semi
69) (inp..jist> (inp~jIst) Comma <Inp-spec)
70) 1MAXT Positive~jnteger
71) (inp...spec) (SeoQ..spOC
72) *FOR (10j00r (Iflp..spSc>
73) (tlonr Identifier Equal Li-expr> Comma (L-expr>

/* OUTPUT SPECIFICATIONS ~

74) (out-part> OUT Lpar (outjllst> Rpar Semi
75) (Out-list> 'out..jlst) Comma (outspec>
76) 'out-SpecI:77) <ouLspec> (Seq..spOC)
78) *FOR (Ojor) (out-.spec>

Me
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APPENDIX C

The listing of the SCE interpreter program

/22 GLOBAL DECLARATIONS 2*/

L *include <stdio.h>

4define Prog-length 650
idefine N.rules 78 /* number of rules in the grammar S/
define N.dums 24 /2 rules not reouiring'anu action */
#define N.-wmbol 20 /* size of the swmbol table V1
idefine NHbound 20 /2 size-of the bound table /
Idefine NHseen 129 /2 max. number of seauences used /
*define Maxtime 30 /* upper limit on simulation time 2/
#define stack-length 40 /S length of working stack $/
$define N.words ((Maxtime . 1) / 16 ) + 1
$detine N.ratios 5 /2 maxt. 0 of arguments in M operators /
#define N.real 5 /2 max. I of real constants used V
Int overflowS3] = { Prog-length, stack-length, N-svmbol, N.bound,

N.ser,, Maxtime + 1 , N.ratios, N.real I

~FILE *fopen() y *fp

,:t an ar-aw to store the Program triples 2/
struct ( char action ;

int value ;
int top } ProgEProalength]

int location /* Pointer to Prog array /

/2 adjust3i] contains the length of the R.HS. of irammar rule
i minus oe, which is the adjustment in the top of the stack /

int adust[N-rules] = (-3, -2, -2, I, -2y O, -2, -2p I, -2,
O, -2p -2, 0, -3, 0, -2, 0, -2, -2,

-2y 09 -2p 0, O, -1, -'It O, P , -1y
-2y 0, 0, 0, -3, -5, -2, -39 O, -2,
09 -2, -2p 0, -2, -2p -2, -2? 0, -2,'-O, O, -1, -3, -So -2t -5, -it -I, -1y

-5t -2p I, -2t O, -2t 0, -49 -21 -I,
O, -2p -4, -4, -2, O, 0, -2

/* dums[] contains the number of'the grammar rules not reouirin"
anu action V,

int dumsCN.dums] = { 3, 4, 5, 6, 8, 9, 12, 13, 14, 22,
24, 25, 29, 31, 32, 33, 34, 44? 49, 51,

L. 69, 74, 75, 76

tin stackCstack.lengthj /2 dynamic working stack 2/
float fstackCstack-length3 ; /3 a matching value.stack /

,'2 SYMBOL TABLE I twPe= S, P or I for sean., Parameter or index, respectivelw. /
struct ( char twe ;

int entrvl;
nt entrv2; } swm_tab[N..smbol] i

int lbound[N-bound3 ; /* lower bound table O/
Lnt ubound[N-bound] ; /2 uPPer bound table 2/
int ran_..r = -1 /2 Pointer to bound table /

. ."

. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ... * .* I *
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,* SEQUENCE STORAGE /
float sea.store[N-seen][Maxtime+l] ; /$ seuences storage S/
unsigned d.tableCN.seQn3CN.wor,Js] I /* keeps tracks of don't cares*/
int seoptr a 0 /$ Pointer to sesuence store /

" ant see.size /* actual size of the table /
int last.omputedCN-seen3 ; /* for consistanc checks S/

float r-storeCN.real] ; /S storage for real constants /
int r.ptr a -1 ; /* the corresponding Pointer /

tin ratio.temiCN.ratios3 ; It to store multiplexer ratios V1
in ratio.ptr ; /* a Pointer to ratio.emp /

int not-done ; /$ a loop control variable /

/$ THE MAIN PROGRAM /
main()

char action
int value
int top A -1 1 /* current top of stack /
int J, looking ;
int stage
int end.staie53 ;

end.stagoCli2 ; endstaseC2]=68 ;
endstaseC33=30 ; end-stageC4]=l ;

/* open the file that contains the Program tuples /
fp a fopen(lout.parse', 'r') ;
for(sea-ptrwO ; seeptr < N.seen ; see.ptr++)

for(J=O ; J < Nords ; j++)
d.tbleseeptr][ I • 0

se.ptr 0;

/I Build standard entries in swmbol tablet thew can be
overwritten bu Proper declaration /

for(j=0 ; J < 3 ; J++)
{ somtabCJ],tupe = 'x '
svm-tabCJ].entrwl a seeptr
last.computeodse-.Ptr++ = Maxtime
swm-tab[J,entrw2 = -1 ; /* indicating a single seauence /

for(j=3 ; J < NHswebols ; j++)
swm-tabCJ].tPe • ' '

for(J1 ; Ij < Maxtime j i++) --
C seQ.store1tClJ] = 0.0 ;
sea.storeC2]CJ] = 1,0 ; }

for(j=O ; j < N.words ) J++)
d.tableC03CJ3 x 0177777

for(J=3 ; J < N-sean ; J++)
last-computedtj3 • 0

/i END OF INITIALIZATION AND BEOINNIG OF MAIN LOOP /

/* Outer for loop: stageml -> declarations,
stage2 -., input Part,
stase=3 -> Program bodw,
stagoe4 -> output Parts /

for(stage=l ; state <= 4 ; ++stage) -
{
location = 0 ;
not.dne a I
/* inner loop 1; read the tuples for the corresponding stage

from file, keep track of the top of the stack and save ir
ProgC] onlw those triples that reouire a certain action /

do

fscanf( fp , '%c' , &action
if(sction !a 'L') fscanf( fp , '%d\n' , %value )
else { check(7, ++r.ptr)

fscanf( fp , f\no ,-*r.storer.Ptr] ; }.
switch (action)

9 , .? ., , , . . . . .: > ., . . ,. .. - . .. . , . .. . , . . . . . . . . .. . . .,
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case 'R' : {lookins I=O ; /* REDUCE*/
while(looking UI j < N-dums)
if(value an dumsEJ++]) looking = 0

if(looking) push.triple(action, value# top)
check(1, (top +a adJust~value-13) )
if(value -= end.staieCstaseJ) not-done=O
break

case 'C' : check(t, ++top) ; / SHIFT IDENTIFIER $/
push.triple(action, value, top ); /* OR INTEGER CONSTANT $/
break

case 'L' : { check(1,++top) /* SHIFT REAL CONSTANT S/
* Push-triple(action, r.ptrq toP)

break ;

case 3' : ' check(1,++top) ;/ SHIFT I/
;-. }break

"* "" case 'A' : C check(l, ++top) ; /* ACCEPT I/
Push-triple(action, value, top )

* -break

while(not.done) ;

location = -1
not-done = I
/* inner loop 2: execute the action routines for that stage 1/
while(not-done)

++location ;
value m Proglocation].value
toP = ProgClocation].to ;

" " switch( Prog[location].action

case 'C' : { stack~top] = value ; break ; }
case 'L' fstackCtop] a rstorevalue] ; break }

.) -, case 'R' : { semantic(value, top) ; break }
case 'A' : noLdone a 0

. } closelfp);

-/ END OF THE MAIN PROGRAM S/

o/1

A routine to store a triple in the arraw ProgC]

Push-triple(a , v, t) char a int v,t

.rog[location].action = a ;
* -ProgElocation].value = v ;

* .. Prog[location].top = t ;
@4, check(O, ++location)

-eturn(O)

4*. ° . . .-. . .. .
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/2 THE SEMANTICS ROUTINES

int declaring 1 /* al oinlu duringi declaration 2
int skip x 0 /* to skip calculation in case of don't cares S/
mnt Mskipa 0 /2 to choso the argument in Mi operator 2

fotgetfloat()2
float tfloat 1* tesporarv variable
int TIME a 1/* global svstm time 2
int d-f lag

sesantic(rjlop top) inL rtleptop

h-at tO, t2P reading r i

if(MskiF-)
Cswitch(rule)
(case 54 :break;
case 64 : --stack~top-43
case 65 : --Nskip
default : return(0)

ir(~sip)
t shitch(rule)

Cocse 53 :
cas 54 : C--skip raturn(O)
case 57 :
case 58:
case 59
case 60
case 61 : Cskip++ Preturn(0) }
default : return(0)

swi tch( rule)

,: 1 : I not-.done z 0 ; return(O) ) /2 signal end of stage 4 S/
case 2 : declaring= 0 ; /2 signal end of declarations 2

not-.done x 0 ; /2 that is stage 1I2
5e0..siz* . see..ptr - 1I return(0) }

/2 PARAMETER DECLARATION 2

case 7 :Ct2 a stack~top-23 P check(2pt2) ;
if((t2 > 2) It (sweatab~t23#tvpe 1 )) run-error(15)
svam.tabCt23.@ntwI a stackCtop3 ;
sv*_.tab~t23.tvpe z a

*return(0)P}

/2INDEX DECLARATIONS X/

case 1o:
case lit ( 1.0 z stack~top3 check(2ptO)

ifc(tO > 2) U (sv&_.tabCt03#twspe ! ') run-.error(IS)
swm..tab~t03*entrwI a 0
s~im.tbCt03.#ntr'i2 a 0
svm..tab~tOJ.twipe aoi

4 return(0) }

/2SEOUENCE DECLARATIONS S/

case IS: Ccheck(3F ++ran..ptr)
lboundran-.ptr3 a 0 1

* ubomjnd~ran..ptr3 - 0
see-.ptr n see-jtr + stackCtop-13
check(4p see..ptr)
return(O) }

case 16: {tO a stackCtop3
* if((tO > 2) ZZ (sw*_.tab~t03#twipe !z ' )) run..epror(15)
* swem.Aab~t03,twpe x 's'

sw&_.tab~t03.@ntri1 a see.,tr
s'im.AabCtOJ.@ntriZ z -1
check(49++seo-ptr)
return(O)
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case 17: C itacktop-2I x stack~top3 S staCk~top-23 211
ret'jrn(O) ; )

* **cast 18: ( t2 a stackEtop-13 ; check~lotV
~ ,~. it((t2 >2) It (s';m-abCt2l.twipe !a ) run-a.rror(15)
* '~. swa-.tabCt23.@ntr~sl z seo..ptr
*svm-tabCt23-entrs2 a a-t

swm..tab~t4 3.tupe a I''
return(O) ; X

case 19: {check( 3+ ,ran.pr
'abound Crari..r 3 staclcCtoP3
lbound ran-ptr3 x stack~top-21

* A.stackCtop-23 a stackCtop3 - stack~top-2J3 + I
roturn(O) ;)

.2 INDEX EXPRESSION 2

cise 210: %' itack~top-23 x stack~top-22j + staek~top3
retuin(O)

! ase 21: < stackCtop-23 a stack~top-23 - tacklto.J
return(O)

case 23: <{.tackr top-23 to stack~top3
return(0)P

* -*case 26: < stack~top-13 stackrtop3;
return(O) ;

case 27: ( stack~to,-23a stack~top-13
* roturn(O)

case 28: ( tO s stackttop3 ; check(2ptO) f
if(declaring S& (sv&-tabCtO3.twp@ !a 'PI)) run..error(4)
ir((swm-tab~tOJ.twp@sa 'P') 11 (svm-.tabtO).type 2'I'))

( stack~top3 a sys-tAabCtO3.ontryl1 ; eturn(O);
run..errar(S)2

ii /2 PROGRAM'S BODY 2

* case 30: CifC++TIME <z stack~ll) ( location z -1 freturn(O) 2
Printf('\n 2*2 OUTPUT SEQUENCES 2*2\n')
not-.done 0 1/S signal end ot stage 3 2

case ~ return(O)P
case35: tO =stack~top-23

if(syx-.tabtO).entry1 >= sym..tab~tWj.entrv2) return(O)
++sym-.tabCtOJ .entrylU location 2 stacktop-33
return(O) ;

case 36: < t2 = stack~top-53 ; check(2yt2)
if(swm-tabCt23,tipe != III) run-error(6);

* swo-.tab~t23.entryl = stack~top-33 ; /t initial value V/
sym-tabCt23.entry2 = stackCtop-lJ ; /2 final value 2
stack~top-61 x location

U return(O) ; 2
case 37: < t2 = stack~top-23 ; check(4vt2)

a if(last..computedCt23++ != TIME-i) run-.error(11)
if(stackttop3) ( write..d(t2,TIME) ; return(O) 2

.*-sea-.sore~t23tTIME3 fstack~top3

- /2 SEtOUENCE SPECIFICATION 2

case 38: < t2 s stackttop-33 ; tO = stack~top-13
if(lbound1++ran-.ptr3 11 ubound~ran-.ptr3) rtin-.error(3);

2e-t sym-.tabEt23#entryl + tO
stackttop-33 see-ptr

case 39: CtQ 2 stackttop3

if(sym-.tabCtOJ.entri2 !u -1) run-.error14);
p.;-; stack~top3 swa-.tab~tO3.entryl

return(O)
case 40: < tO = stack~top3

ran-.ptr++
if(tO .' lboundrag.ptr3 11 tO > uboundran-p.tr3) run-errorl)v
stackcCtop-22 z stack~top-21 * (ubosjnd~ran..ptrJ -

retun(O)lboeund~ran-ptr3 + 1) + (stackCtop3 - lboundran..,tr)

case 41: Ct2 a stackCtop-23 tO a stack~top3
ch-eck(2vt2) ;
if(s,~m.tab~t23.type 2'S' 11 sya..tabCt2).entri2 < 0) run-.error(12);
ran..ptr asy*-tabCt13.*ntri2

' ~if(tO < 1bosindran-.pitr3 11 tO > liboundran-p.ti)) run-.error(1);
stjckCtop3 stackCtop3 - lboundrai..Wtr
return(O) 2
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. ELEMENT WISE OPERATORS ON SEQUENCES *1212

case 420 < if(stackCtop3 11 stackCtop-23)
{stack~top-23sl ; return(0) }-

tstacktaoe-23 += fstackCtop3
stack~top-2) 0
ret'Jrn(0) i

case 43: { f(5tacktop I I stack[ top-2 )
{stack~top 23=1 return(O) P

fstackta~~p-41. - tstackCtop3
stackCtop-23 0
-eturri(0) ;

case 45: (if(stack~top]11I stackCtop-)
{stzck~tap-23=1 i return(0) 0.

fstackEtop-2] $ fstackttop3
stacktaop-23 0
return(0) i

case 46: if(Stacktoap) 11 stack~top-23)
%stack~top'-23=1 ;return(O) ;I

if(tstackCtop3) ( tstack~top-23 / stackttop3
stackCtop-23 0 ;I

else stack~top-23 a 1
return(O) ; 2

case 47: C stack~top-23 x q-opl(tstackftop-23? stackrtop-23, tstack~top),

fstack~top-23= tflfloa)
return(O) ;-

case 48:C stackttop-23 u..op2(ttackEtop-23v stack~top-239 fstackttop31
stackttoel, Itfloat)

fstackCtop-23= tfloat
return(0) 2-

case 50: < it(stack~top3) <stackttop-23=1 Preturn(0) 2
fstackCtop-23 fstacktop]
stack~top-23 0
return(C) ; 'X

/* OPERATORS DEFINED DIRECTLY ON SEQUENCES S/

case 52: tO =stackCtoaJp3 check(41tO)
i = Iast-computedCtO3
if(TIME >j) run.errar(0);
it(read-.d(tOPTIME)) ( stackttop) 1 ;return(0) P
fstackCtop3 see-.storeCt03CTIME3
stack~top3 = 0
return(O) ;I

"7se5: < TIME = stackttop-13;:as 53 stackCtot-13 = fstackttop3
stack~top-13 = stackEtop3
return(0) ;

case 54: < itstackttop-33) run..error(7)
Mski = 0
stack~tap-33 = stackEtop-13
fstack~top-33 a tstack~top-13;
return(0) 2

case 53: {t2 = stackCtop-63
ifTIME < t2) < stackCtop-8J I ;

fstack~top-83= 0o
return(0)

t2 a (TIME - t2) %. (stackCtop-23 stack~tor-43)
tO stack~top3
i last-comalitedltOJ
if(TIME > ,.) run-.error(I0)
"float a 0.0 ;
for(in(TIME - t2) i <= TIME ; = i. + stack~top-2)

if(read...dtOpJ)) Cstack~top-83 a 1P
fstackttop-831 0
return(0) ;I

else tfloat += sea-s.toreCtO2CJJ
stack~top-83z
fstack~top-83 = tfloat

Scase 56: CfstackCtop'-*1 = fstack~top-13
S., 43o-2 = stackttop-13 ;Vakto-retun(O



case 57:* t 2 = stackCtop-33 ; tO =stack~top-13 213
if(TIME <t2) {skip=1

stack~top-53 x 1
tstackCtop-53 a 0 ; return(0)

stcjtp5 a r2Ia~E; ti t; / cardinalitw of list*/
Mskip a i J chosen element V
return(O) ;>

cas 58: CtO astackttop3
if(TIME <= tO) (skipul

* ,**stacktop-1] I ;
tstackCtop-13 0 ;return(O) ;'

stackCtop-13 x TIME
TIME z TIME W tS return(O) ;

case 59: C tO a stackrtop3
if(TIME <= tO) (skip

stackttop-1] 0 ;
TIstackrtopI- = 0 ;return(O)

return(Q) ;>
case 60: . tO a stack~top3

t2 = ',TINE + tO) % Q1 + tO)
if(tL2) ( skip =1 ; /4 don't care V

fstacktop-13 = 0 ; return(O) ;I
t2=(TIME + tO) / (1 + tO) ;
sTNEtp1 TIME

do TIEuxn t2
case 61: Ct =stak(O) -)It tcr~~3
case 61: (tINz stc~o-3Jt2 s zi stcko1

if(IM <t2 (stk~ip- 1 1:~~ :- ~stack~top-53 0 1 ;eunO
stacck~top-53 z T0l ; PunO

TIME = TINE- ((TINE - t2) % tO)
return(O) ;.3 case 62: stackrtop-23 z stackCtup-1) return(O)

case 63: < stack~top+13 = 1 ; return(O) }
case 64: --stackCtop-43

stackCtop-23 stackEtopK1
rstack~top-23 z fstackttop3

case 65:* (.--Mikip;
retujrn(O) ;S case 66: Ccheck(69 ++ratio-jtr)

stackEtop-2J3 += stack~top3
ratio-tempCratio-..tr3 = stack~top-23
return(O)

case 67: ( ratio-.ptr :0
? ratio-.temhpCO] stackCtop3

return(O) }

/5 INPUT SPECIFICATIONS V/

case 68: ( not-done z 0 / * end of stage 2 V/
return(0) ;

case 70o: < stackElj = stack~toP3
check(Sp stack~top3);
return(O) ; >

4case 71: ( tO a stackCtop3 1 reading = 1
for(j=1 ; i <= stackClJ ; j++)
if( reading)
(seeostore[tOJ3j z getfloat(d.f lag)

if(d..lag x= -1) Creading z 0
write-.d(tOvj);

' else write..d(tOtj)
ELlast-.coputedCtO3 stackClJ

return(0) ; >case 72:.( tO = stackCtop-13
it(swm-.tabEtOJ,@ntrvl >z swm-.tab~t03.entrw2) return(0)
++sw~m-tabCt03.entrvl
location astack~top-23
return(0) }
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case 7Z: t2 = stackttop-4] ; check(2,t2)
if(svmtabCt2].tPe != 'I') run.error(6)
swm-tabCt2].entrvl = stack~top-23 ;
suLmtabt23.entrv2 = stackCtoP]
stackCtop-53 = location
retujrn(O) ; }

'/ OUTPUT SPECIFICATIONS /

case 77: < tO = stackCtop] "-..- for(j=1 ; i <= stackCl] ; J+ ) ;
,. -." if(r*&d-d(tOj)) Printf(' d 2) ;''

else Printf('%5,2f 'r seastore[tO[J]E)
'r intl ($\n *$E2**;$*\
return(O) i }

case 78: to a stackctop-1 ;
if(swmatabCtO].entrv1 >= svmatabCtO].entru2) return(O)
++sum.tabCtO].entrl;
location s stack[top-2] ;.-%

.-.: *return(O) ;

/2 END OF THE SEMANTICS ROUTINES 2/

i2 User Defined Operators $/
/2t

These routines are Provided bw the user to define the
binary operators U1 and U2. The operands are Passed in
ol and o2 and the result is returned in r.
If anu of the operands is the don't care sumbol, t1 or t2
is set to I, correspondingly, otherwise the are set to 0.
The return value of the functions should be 0 if the
result of the operation is not a don't care and I if it is. -

u-oPl(ol,tl,o2,t2,r) ant tlpt2 ;
float ol,o2, *r

,/* Formulas for u.opl and r 2/
f

u_.o ,oltl,o2,t2, r) int tl,t2 ;
float olo2, *r

/* Formulas for u-oP2 and r S/

II,

: -.-"
_'-1
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The following routine reads the next item from the
input dat4 file. It assumes that one of the following
exists on the file:
1) a floating Point number,
) a 'd' ; indicating a don't care item,

3) or "...' ; indicating that the remaining items in
the current serauence are don't cares#
The different cases are signaled bv the global flag d-flag

float ietfloat()

int c, intpart
int minus z I
""oat fraction , P-of-l0

while((c=Setcharo) == ' = I 1 C '\n' ) ;
if(c z= EOF ) run.error(9) ;
Me z= 'd' ) { d-flag 1 ; /* a don't care svmbol */

return(O) ;}
if(c == ".' it (getchar() == '.') I1 (getcharo == '.') )

{ dflai X -1 ; /S seauence terminated $/
return(O) ;}

if(c == '-") cusetchar() ; minus = -1 }
int-part = 0

.C ' ~ while(isdigit(c)) C intpart z (10 * intpart) + (c - '0')
c =etchar() I

if( c != '.') run.errror(8) ;
fraction = 0.0 ;
P..oflO = 10.0 ;
while(isdiait(c=#gtcharo)) (fraction = fraction + (c - '0') / P-of-lO;

:-" P-of.AO = P.of.10 $ 10.0 ; }

if((c (c ' ') 1 (C = '\n') ) run.error(8) ;
fraction = minus * ( int.part + fraction
d-flag a 0 ;
return(fraction) ;

isdigit(d) int d ,

if(d <= '9' It d >* '0') return(l);
return(O)

The following routines keep track of the Position of the
o .-*. don't care sumbols in the data seauences; Each entru in
- ' :a ieouence has a corresponding bit in the arrav d.table,

write.d(st) sets the bit corresponding to the element t
of the seauence s to I indicating a don't care , while
readLd(st) returns the value of the bit corresponding

mLo the element t in seouence s.

wr:Lte-d(srt) int st;

,:< ... in. wcrd, bit P
unsigned P atterna1
word t / 16
bit a (t . 16)
Pattern = Pattern <." (15-bit)
d.tablCs31word] = (d-tableCs3Cword]) I Pattern
return.(0)

.ead.d(stt) int s,t

S i Lnt word, bit
unsigned Pattern z I
word = t / 16
bit x t % 16
Pattern = Pattern << (15-bit) I
Pattern a pattern I d.tableCs]Cword;
it(pattern) return(1) ;
return(O)

I.°-
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/UU ERROR ROUTINES *X**$*/

A routine to check the bounds of working arraws, the arrow
to be checked is determined bw the argument i,

check(i, Ptr) int i.ptr ;

if(ptr < overflowui3) return(1) ;
switch(i) V

cast 0 : - Printf('t* program arra overflow S**\n') ;
exit(O) I }

case I : { Printf('*$* working stack overflow ***\n') ;
exit(O) ; }

case 2 : { Printf('t** swmbol table overflow Z**\n') ;
exit(O) ;

case 3 { Printf('U* bound table overflow ***\n')
exit(O) ; }case 4 { rintf(*** seeuence store overflow **\n') ;

exit(O) I "
case 5 : { printf('U* MAXT should be less than %d\n', Maxtime);

exit(O) ; )
case 6 : { Printf(fl$ temporarv ratio list overflow *$\n');

exit(O) ; -
case 7 < Printf('4*Z real constants storage overflow **\n');

exit(O) ; 2

exit(O)

/, ",1.

A procedure to Print run time error messages and stop
execution, The messaie to be Printed is determined
hw the argument i.

run-error(i) int i
(
switch( i)
{
case I : { Printf(°$* seauence array out of bound \n);

exit(O) I -
case 2 : { Printf(** too many arra arguments \n') ;

exit(O) ; 2
case 3 : { Printf('S* too few arra arguments \n) ;

exit(O) ; }
case 4 : C rintf('2Z onlw Parameters maw be used in seau. declaratrion \n);

exit(O) ; I
case 5 : Printf('t* expecting-a Par, or an index in see. specification \n');

exit(O) ; I.
case 6 : { Printf('** FOR variables must be declared as INDEX ')

exit(O) ;
case 7 : { Printf('** wrong number of arguments in Multiplexer list \n');

exit(O) ; )
case 8 : { printf('** Format error in input file **\nl)

exit(O) ;
case 9 : P 'rint(WU insufficient data in input file *S\n');

exit(O) ; 1
case I0: ( Printf('O* incorrect model or non causal eeuations **\n');

exit(O) I 2
case 11: { Printf('2* Inconsistent s$stem of eeuations \n') ;

Printf('$* Attempt to overwrite a seouence \n') ;
oxit(O) ; 2

case 12: { Printf('** arra of seeuences not declared \n') ;
exit(O) ;

case 13: < Printf(l** seauence not declared \n') ;
exit(O) ; 2

case 14; t Printf('** missing argument list \n) ;
exit(0) 2-

case 15: { Printf(', variable alreadv declared \n ')
exit(O) ; }

/*2***** END OF PROGRAM LISTING ********/

.-- , . .. ~ .. 3.'...- -.. - - . . . "-%'. . - - . " -
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